

Medium and Low-Voltage drives Servo drives Solar pump inverters Soft starters solution provider

### MAX500-PV series solar pump inverter with MPPT >99%

## 0.75KW-250KW

User manual









#### SHENZHEN INOMAX TECHNOLOGY CO.LTD

www.inomaxtechnology.com

## **Quick Start**

| Model                     | MAX500-PV-1                                                                                                                                                                                       | MAX500-PV-2                                                                         | MAX500-PV-3                                        | MAX500-PV-4                        |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|
| Input DC Range(V)         | 170-800                                                                                                                                                                                           |                                                                                     |                                                    | 270-800                            |
| MPPT Range(V)             |                                                                                                                                                                                                   | 170-800                                                                             |                                                    | 270-800                            |
| Recommended Input DC(V)   | 330-800                                                                                                                                                                                           | 330-800                                                                             | 330-800                                            | 540-800                            |
| Input AC(V)               | 220                                                                                                                                                                                               | 220                                                                                 | 220                                                | 380                                |
| Input AC Connect          | Single<br>Phase                                                                                                                                                                                   | Single<br>Phase                                                                     | Three<br>Phases                                    | Three<br>Phases                    |
| Output AC(V)              | 220                                                                                                                                                                                               | 220                                                                                 | 220                                                | 380                                |
| Output AC Connect         | Single<br>Phase                                                                                                                                                                                   | Three<br>Phases                                                                     | Three<br>Phases                                    | Three<br>Phases                    |
| Power Range(kW)           | 0.75 - 5.5                                                                                                                                                                                        | 0.75 - 5.5                                                                          | 0.75 - 7.5                                         | 0.75 - 250                         |
| Recommended Configuration | Inverter power one level higher than pump power Solar panel<br>power 2.0 times of pump power when pump power below 4kW<br>Solar panel power 1.3 times of pump power when<br>pump power over 2.2kW |                                                                                     |                                                    |                                    |
| Terminal For AC Input     | Please connect X4 and COM terminal when inverter get AC power<br>input. Do not input AC power and DC power (from solar panel) at<br>the same time to inverter,<br>unless install optional device. |                                                                                     |                                                    |                                    |
| Failure Signal Lamp       | Terminal (TA, TB, TC, 24V, COM) can light the lamp<br>(green running and red alarm signal) automatically and easily in<br>control system.                                                         |                                                                                     |                                                    |                                    |
| Wirin<br>g                | Please do not connect terminals (R S T U V W + -)<br>directly because short circuit will damage inverter.                                                                                         |                                                                                     |                                                    | •)                                 |
| Start Automatically       | When inverter<br>inverter will sta<br>inverter workin<br>set parameter                                                                                                                            | start working autor<br>rt and stop frequer<br>g life. Please<br>P28.03 to protect i | natically with we<br>htly too many tim<br>nverter. | ak sunshine,<br>es. It will reduce |

## **1** Operation

### 1.1 Button

1. When P28.01=1 (default setting), inverter start working automatically once it getpower. When P28.01=0, please press "**RUN**" button to start inverter.

2. Keypad will show data in turn. If you press button, it will always shows same data.

### 1.2 Data

When inverter is in standby model, keypad will show the specification in turn

| Solar panel DC voltage   |
|--------------------------|
| Maximum output frequency |
| Output current           |

When inverter is outputting power, keypad will show the specification in turn

Output frequency

Output current

## **2** Protection

| Minimum frequency | If output frequency is lower than 35Hz for 60s, inverter will stop working for 300s and restart automatically. |
|-------------------|----------------------------------------------------------------------------------------------------------------|
|                   | If output current smaller than the value (parameter 28.13) for 60s,                                            |
|                   | inverter will stop working for 300s and restart automatically.                                                 |
| Overveltere       | If DC voltage from solar panel is over 800V, inverter will stop                                                |
| Over voltage      | working.                                                                                                       |
|                   | If float switch sensor reach high position, sensor connect X2 and                                              |
| Tank full         | COM terminal. After sensor disconnect X2 and COM terminal,                                                     |
|                   | inverter will wait for 900s more and restart automatically.                                                    |
|                   | If floating switch sensor reach low position, sensor connect inverter                                          |
| Well empty        | X3 and COM terminal. After sensor disconnect X3 and COM                                                        |
|                   | terminal, inverter will wait for 900s more and restart automatically.                                          |

## **3 Parameter**

| No     | Name                                  | Detail                                                                                                                                                                                                                                          | Range | Default |
|--------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| P28.01 | Run<br>command                        | 0.Keypad;<br>1.Run automatically when power on<br>2.Control board terminal;<br>3.Communication channel.                                                                                                                                         | 0-3   | 1       |
| P28.03 | Waiting time<br>in automatic<br>model | 0.10s;<br>1.30s;<br>2.60s;<br>3.90s;<br>4.180s;<br>5.300s;<br>6.600s;<br>7.1200s;<br>8.1800s;<br>If set P28.01=1 and power on,<br>inverter will wait for some time and<br>start working automatically.                                          | 0-8   | 0       |
| P28.04 | Maximum<br>output<br>frequency        | 0.60Hz;<br>1.50Hz;<br>2.45Hz;<br>3.40Hz;<br>4.35Hz;<br>5.30Hz;<br>6.25Hz;<br>7.20Hz.                                                                                                                                                            | 0-7   | 1       |
| P28.05 | Minimum<br>output<br>frequency        | 0.45Hz;<br>1.40Hz;<br>2.35Hz;<br>3.30Hz;<br>4.25Hz;<br>5.20Hz;<br>6.15Hz;<br>7.10Hz.<br>Output frequency drops below 35Hz<br>for 60s, inverter show alarm signal<br>"111" and stop working<br>35Hz depends on P28.05.<br>60s depends on P28.06. | 0-7   | 2       |

| P28.06 | Delay time of<br>minimum<br>frequency         | Output frequency drops below 35Hz<br>for 60s, inverter show alarm signal<br>"111" and stop working<br>35Hz depends on P28.05.<br>60s depends on P28.06.     | 0-65535  | 60  |
|--------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| P28.07 | Restart time<br>after<br>minimum<br>frequency | After alarm signal "111" last for 300s,<br>inverter will restart automatically.                                                                             | 0-65535  | 300 |
| P28.12 | Dry running<br>protection                     | 0 Invalid;<br>1 Enable.                                                                                                                                     | 0-1      | 0   |
| P28.13 | Current of dry<br>running                     | If inverter output current less than<br>P28.13 value (Unit:Ampere) for 60s,<br>inverter will show alarm signal<br>"222" and stop.<br>60s depends on P28.14. | 0-6553.5 | /   |
| P28.14 | Protection<br>time of dry<br>running          | If inverter output current less than<br>P28.13 value (Unit:Ampere) for 60s,<br>inverter will show alarm signal<br>"222" and stop.<br>60s depends on P28.14. | 0-6553.5 | 60  |
| P28.15 | Interval time<br>of dry running<br>restart    | After alarm signal "222" last for 300s,<br>inverter will restart automatically.                                                                             | 0-65535  | 300 |
| P28.18 | Motor rated power                             | Unit: kW                                                                                                                                                    | /        | /   |
| P28.19 | Motor rated voltage                           | Unit: V                                                                                                                                                     | /        | /   |
| P28.20 | Motor rated current                           | Unit: A                                                                                                                                                     | 1        | /   |
| P28.21 | Motor rated speed                             | Unit: rpm                                                                                                                                                   | 1        | /   |
| P28.22 | Parameter<br>reset                            | 0 Invalid;<br>1 Enable.                                                                                                                                     | 0-1      | 0   |
| P28.30 | Delay time of<br>full water<br>level signal   | Inverter will show "555" alarm signal<br>if full water signal last 5s.                                                                                      | 0-1000   | 5   |
| P28.31 | Restart time<br>after 555<br>alarm signal     | If inverter don't receive full water<br>signal any more, inverter will wait for<br>900s and restart working.                                                | 0-1000   | 900 |

| P28.32 | Delay time of<br>low water<br>level signal | Inverter will show "777" alarm signal<br>if low water signal last 5s.                                         | 0-1000 | 5   |
|--------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|-----|
| P28.33 | Restart time<br>after 777<br>alarm signal  | If inverter don't receive low water<br>signal any more, inverter will wait for<br>900s and restart working.   | 0-1000 | 900 |
| P28.39 | Single phase<br>model                      | 0 Invalid;<br>1 Enable.<br>Take out capacity in pump and set<br>P28.39=1, inverter will start pump<br>easier. | 0-1    | 0   |

## **4** Specification

## 4.1 Designation

## MAX500-PV-X-XRX

## 1 2 3

| Sign | Identific<br>ation | Description    | Content                                                                                                                                                                                                                                  |
|------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | MAX500-PV          | Series name    | Solar pumping series                                                                                                                                                                                                                     |
| 2    | х                  | Voltage degree | <ul> <li>4: 380V/three phase input/ three phase output</li> <li>3: 220V/three phase input/ three phase output</li> <li>2: 220V/single phase input/ three phase output</li> <li>1: 220V/single phase input/single phase output</li> </ul> |
| 3    | XRX                | Output power   | 0R7: 0.75kW<br>1R5: 1.5kW<br>002: 2.2kW<br>004: 4kW<br><br>250: 250kW                                                                                                                                                                    |

## 4.2 Specification

| Voltage Degree           | 220V     | 380V     |
|--------------------------|----------|----------|
| Maximum Input DC Voltage |          | 800V     |
| Minimum Input DC Voltage | 170V     | 270V     |
| MPPT Voltage             | 170-660V | 270-660V |
| Recommended DC Voltage   | 330-750V | 540-750V |

| Model          | Input AC   | Input AC    | Output AC   | Panel power | Pump  |
|----------------|------------|-------------|-------------|-------------|-------|
| Woder          | Voltage(V) | current (A) | current (A) | (kW)        | power |
|                | 220        | 0           | 7           | 0.0         | (KVV) |
| MAX500-PV-10R7 | 220        | 9           | /           | 0.8         | 0.4   |
| MAX500-PV-11R5 | 220        | 16          | 9           | 1.4         | 0.7   |
| MAX500-PV-1002 | 220        | 24          | 14          | 3.0         | 1.5   |
| MAX500-PV-1004 | 220        | 27          | 17          | 4.4         | 2.2   |
| MAX500-PV-1005 | 220        | 30          | 25          | 5.2         | 4.0   |
| MAX500-PV-20R7 | 220        | 9           | 4           | 0.8         | 0.4   |
| MAX500-PV-21R5 | 220        | 16          | 7           | 1.4         | 0.7   |
| MAX500-PV-2002 | 220        | 24          | 9           | 3.0         | 1.5   |
| MAX500-PV-2004 | 220        | 30          | 17          | 4.4         | 2.2   |
| MAX500-PV-2005 | 220        | 35          | 25          | 5.2         | 4.0   |
| MAX500-PV-30R7 | 220        | 5           | 4           | 0.8         | 0.4   |
| MAX500-PV-31R5 | 220        | 8           | 7           | 1.4         | 0.7   |
| MAX500-PV-3002 | 220        | 11          | 10          | 3.0         | 1.5   |
| MAX500-PV-3004 | 220        | 15          | 13          | 4.4         | 2.2   |
| MAX500-PV-3005 | 220        | 26          | 25          | 5.2         | 4.0   |
| MAX500-PV-3007 | 220        | 35          | 32          | 7.2         | 5.5   |
| MAX500-PV-40R7 | 380        | 4           | 3           | 0.8         | 0.4   |
| MAX500-PV-41R5 | 380        | 5           | 4           | 1.4         | 0.7   |
| MAX500-PV-4002 | 380        | 6           | 5           | 3.0         | 1.5   |
| MAX500-PV-4004 | 380        | 14          | 9           | 4.4         | 2.2   |
| MAX500-PV-4005 | 380        | 20          | 13          | 5.2         | 4.0   |
| MAX500-PV-4007 | 380        | 25          | 17          | 7.2         | 5.5   |
| MAX500-PV-4011 | 380        | 32          | 25          | 10          | 7     |
| MAX500-PV-4015 | 380        | 40          | 32          | 14          | 11    |
| MAX500-PV-4018 | 380        | 47          | 38          | 20          | 15    |
| MAX500-PV-4022 | 380        | 56          | 45          | 23          | 18    |
| MAX500-PV-4030 | 380        | 70          | 60          | 29          | 22    |
| MAX500-PV-4037 | 380        | 80          | 75          | 39          | 30    |
| MAX500-PV-4045 | 380        | 92          | 90          | 48          | 37    |

| MAX500-PV-4055 | 380 | 115 | 110 | 59  | 45  |
|----------------|-----|-----|-----|-----|-----|
| MAX500-PV-4075 | 380 | 160 | 150 | 72  | 55  |
| MAX500-PV-4090 | 380 | 190 | 180 | 98  | 75  |
| MAX500-PV-4110 | 380 | 225 | 215 | 117 | 90  |
| MAX500-PV-4132 | 380 | 265 | 260 | 143 | 110 |
| MAX500-PV-4160 | 380 | 307 | 304 | 172 | 132 |
| MAX500-PV-4200 | 380 | 385 | 377 | 208 | 160 |
| MAX500-PV-4220 | 380 | 430 | 426 | 260 | 200 |
| MAX500-PV-4250 | 380 | 468 | 465 | 286 | 220 |

## **5** Installation

## 5.1 Main Circuit Terminals

## MAX500-PV-1 (220 V single phase input and single phase output )



MAX500-PV-2 (220 V single phase input and 3 phase output )



MAX500-PV-3 (220 V single phase input and 3 phase output)



MAX500-PV-4 (380 V single phase input and 3 phase output)



| Terminal symbol | Terminal wiring                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RST             | AC power input terminals for three phases                                                                                                                              |
| RT              | AC power input terminals for single phases                                                                                                                             |
| + -             | DC input terminals for solar DC power(Do not<br>charge inverter by generator and solar panel at<br>the same time unless you add optional device)                       |
| PE              | Grounding terminal                                                                                                                                                     |
| UVW             | AC power output terminals for three phases                                                                                                                             |
| UW              | AC power output terminals for single phases, if<br>can not start single phase pump please take<br>out capacity, change the wiring as photo below,<br>and set P28.39=1. |
| PB              | Invalid terminal                                                                                                                                                       |

## 4.3 Pump connection:





## 4.4 Control board Terminal



| Terminal | Terminal function description                                                         |
|----------|---------------------------------------------------------------------------------------|
| X1       | Set Parameter P28.01=2 for terminal control, connect X1 and COM                       |
| СОМ      | terminal together, inverter will run.                                                 |
| X2       | Tank full sensor, connect X2 and COM terminal for full water signal,                  |
| СОМ      | inverter will stop in 5s, show alarm signal "555", and restart automatically in 900s. |
| X3       | Well empty sensor, connect X3 and COM terminal for empty water signal,                |
| СОМ      | 900s.                                                                                 |
| X4       | When investor set AC news insut from DCT to mined places connect V4                   |
| СОМ      | and COM terminal.                                                                     |

## 5 Alarm signal

When inverter show alarm signal with software default setting, keypad will show number as below

| 111 | When inverter output frequency is lower than 35Hz for 60s,                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | inverter shows alarm signal "111".                                                                                                                                                         |
| 222 | When pump are dry running for 60s and output current is                                                                                                                                    |
|     | smaller than P28.13 value, inverter shows alarm signal "222".                                                                                                                              |
| 222 | When solar panel voltage is lower than 170V (220V inverter) or                                                                                                                             |
| 333 | 270V(380V inverter), inverter shows alarm signal "333".                                                                                                                                    |
|     | When solar panel voltage higher than 800V, inverter shows                                                                                                                                  |
| 444 | alarm signal "444".                                                                                                                                                                        |
| 555 | Inverter will show "555" alarm signal if full water signal last 5s. After inverter shows alarm signal "555" and stop receiving full water signal, inverter will wait for 900s and restart. |
|     | Inverter will show "777" alarm signal if low water signal last 5s.                                                                                                                         |
| 777 | After inverter shows alarm signal "777" and stop receiving low water signal, inverter will wait for 900s and restart.                                                                      |
| 000 | When inverter output current is too big and may damage pump,                                                                                                                               |
| 000 | inverter shows alarm signal "888".                                                                                                                                                         |
| 000 | When inverter output power is too big and may damage pump,                                                                                                                                 |
| 999 | inverter shows alarm signal "999".                                                                                                                                                         |

## **6** General function parameters

- " $^{\circ}$ ": means the set value of the parameter can be modified on stop and running state;
- " $\odot$ ": means the set value of the parameter cannot be modified on the running state;

● ": means the value of the parameter is the real detection value which cannot be modified;
Note: The inverter implements auto checking and restriction on the parameter modification property. This prevents users from modifying parameters by misoperation.

### 6.1 Common function parameters for solar pumping inverter control

| Function<br>code | Name                   | Detailed illustration of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default | Modify |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| P00 Group E      | Basic function gro     | up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |
| P00.00           | Speed control<br>mode  | <ul> <li>0: SVC 0</li> <li>No need to install encoders. Suitable in applications which need low frequency, big torque for high accuracy of rotating speed and torque control. Relative to mode 1, it is more suitable for the applications which need small power.</li> <li>1: SVC 1</li> <li>1 is suitable in high performance cases with the advantage of high accuracy of rotating speed and torque. It does not need to install pulse encoder.</li> <li>2: SVPWM control</li> <li>2 is suitable in applications which do not need high control accuracy, such as the load of fan and pump, and suitable when one inverter drives multiple motors.</li> <li>Note: In vector control, the inverter must autotune motor parameters first.</li> </ul> | 2       | O      |
| P00.01           | Run command<br>channel | Select the run command channel of the<br>inverter.<br>The control command of the inverter<br>includes: start, stop, forward/reverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | 0      |

| Function code | Name                               | Detailed illustration of parameters         | Default | Modify |
|---------------|------------------------------------|---------------------------------------------|---------|--------|
|               |                                    | rotating, jogging and fault reset.          |         |        |
|               |                                    | 0: Keypad running command channe            |         |        |
|               |                                    | ("LOCAL/REMOT" light off)                   |         |        |
|               |                                    | Carry out the command control by RUN        |         |        |
|               |                                    | STOP/RST on the keypad. Set the multi-      |         |        |
|               |                                    | function key QUICK/JOG to                   |         |        |
|               |                                    | FWD/REV shifting function (P07.02=3) to     |         |        |
|               |                                    | change the running direction; press RUN     |         |        |
|               |                                    | and STOP/RST simultaneously in running      |         |        |
|               |                                    | state to make the inverter coast to stop.   |         |        |
|               | 1: Terminal running command channe |                                             |         |        |
|               |                                    | ("LOCAL/REMOT" flickering)                  |         |        |
|               |                                    | Carry out the running command contro        |         |        |
|               |                                    | by the forward rotation, reverse rotatior   |         |        |
|               |                                    | and forward jogging and reverse jogging     |         |        |
|               |                                    | of the multi-function terminals.            |         |        |
|               |                                    | 2: Communication running command            |         |        |
|               |                                    | channel (' <mark>LOCAL/REMOT</mark> " on);  |         |        |
|               |                                    | The running command is controlled by the    |         |        |
|               |                                    | upper monitor via communication.            |         |        |
|               |                                    | This parameter is used to set the           |         |        |
|               |                                    | maximum output frequency of the inverter.   |         |        |
|               |                                    | Users need to pay attention to this         |         |        |
| P00.03        | Max. output                        | parameter because it is the foundation of   | 50.00Hz | Ø      |
|               | frequency                          | the frequency setting and the speed of      |         |        |
|               |                                    | acceleration and deceleration.              |         |        |
|               |                                    | Setting range: P00.04–400.00Hz              |         |        |
| P00.04        | Upper limit of the                 | The upper limit of the running frequency is | 50.00Hz | Ø      |

\_

| Function code | Name               | Detailed illustration of parameters              | Default | Modify |
|---------------|--------------------|--------------------------------------------------|---------|--------|
|               | running frequency  | the upper limit of the output frequency of       |         |        |
|               |                    | the inverter which is lower than or equal to     |         |        |
|               |                    | the maximum frequency.                           |         |        |
|               |                    | Setting range: P00.05–P00.03 (Max.               |         |        |
|               |                    | output frequency)                                |         |        |
|               |                    | The lower limit of the running frequency is      |         |        |
|               |                    | that of the output frequency of the inverter.    |         |        |
|               |                    | The inverter runs at the lower limit             |         |        |
|               |                    | frequency if the set frequency is lower          |         |        |
| P00.05        | Lower limit of the | than the lower limit.                            | 0.00Hz  | Ø      |
|               |                    | <b>Note:</b> Max. output frequency ≥ Upper limit |         |        |
|               |                    | frequency ≥ Lower limit frequency                |         |        |
|               |                    | Setting range: 0.00Hz–P00.04 (Upper              |         |        |
|               |                    | limit of the running frequency)                  |         |        |
|               |                    | ACC time means the time needed if the            |         |        |
| D00.44        |                    | inverter speeds up from 0Hz to the Max.          | Depend  | 0      |
| P00.11        | ACC time I         | output frequency (P00.03).                       | on mode | 0      |
|               |                    | DEC time means the time needed if the            |         |        |
|               |                    | inverter speeds down from the Max.               |         |        |
|               |                    | output frequency to 0Hz (P00.03).                |         |        |
|               |                    | MAX500-PV series inverters have four             |         |        |
|               |                    | groups of ACC/DEC time which can be              |         |        |
| P00.12        | DEC time 1         | selected by P05. The factory default             | Depend  | 0      |
|               |                    | ACC/DEC time of the inverter is the first        | on mode |        |
|               |                    | group.                                           |         |        |
|               |                    | Setting range of P00.11 and P00.12: 0.0–         |         |        |
|               |                    | 3600.0s                                          |         |        |
| P00.13        | Running direction  | 0: Runs at the default direction. The            | 0       | 0      |

| Function code | Name                                      | Detailed illustration of parameters               | Default | Modify     |
|---------------|-------------------------------------------|---------------------------------------------------|---------|------------|
|               | selection                                 | inverter runs in the forward direction.           |         |            |
|               |                                           | FWD/REV indicator is off.                         |         |            |
|               |                                           | 1: Runs at the opposite direction. The            |         |            |
|               |                                           | inverter runs in the reverse direction.           |         |            |
|               |                                           | FWD/REV indicator is on.                          |         |            |
|               |                                           | Modify the function code to shift the             |         |            |
|               |                                           | rotation direction of the motor. This effect      |         |            |
|               |                                           | equals to the shifting the rotation direction     |         |            |
|               |                                           | by adjusting either two of the motor lines        |         |            |
|               |                                           | (U, V and W). The motor rotation direction        |         |            |
|               |                                           | can be changed by Q <mark>UICK/JOG o</mark> n the |         |            |
|               | keypad. Refer to parameter P07.02.        |                                                   |         |            |
|               | Note:                                     |                                                   |         |            |
|               | When the function parameter comes back    |                                                   |         |            |
|               | to the default value, the motor's running |                                                   |         |            |
|               |                                           | direction will come back to the factory           |         |            |
|               | default state, too.                       |                                                   |         |            |
|               | In pump application scenarios, the        |                                                   |         |            |
|               |                                           | inverter cannot run in the reverse                |         |            |
|               |                                           | direction. This function code cannot be           |         |            |
|               |                                           | modified.                                         |         |            |
|               |                                           | 2: Forbid to run in reverse direction: It can     |         |            |
|               |                                           | be used in some special cases if the              |         |            |
|               |                                           | reverse running is disabled.                      |         |            |
|               |                                           | 0: No operation                                   |         |            |
|               | Motor parameter                           | 1: Rotation autotuning                            | 0       |            |
| FUU. 13       | autotuning                                | Comprehensive motor parameter                     | U       | $\bigcirc$ |
|               |                                           | autotune.                                         |         |            |

-

| Function code | Name               | Detailed illustration of parameters        | Default | Modify |
|---------------|--------------------|--------------------------------------------|---------|--------|
|               |                    | It is recommended to use rotation          |         |        |
|               |                    | autotuning when high control accuracy is   |         |        |
|               |                    | needed.                                    |         |        |
|               |                    | 2: Static autotuning                       |         |        |
|               |                    | It is suitable in the cases when the motor |         |        |
|               |                    | cannot de-couple form the load. The        |         |        |
|               |                    | autotuning for the motor parameter will    |         |        |
|               |                    | impact the control accuracy.               |         |        |
|               |                    | 3: Static autotuning 2 (No autotuning for  |         |        |
|               |                    | non-load current and mutual inductance)    |         |        |
|               |                    | 0: No operation                            |         |        |
|               |                    | 1: Restore the default value               |         |        |
|               |                    | 2: Clear fault records                     |         |        |
|               |                    | Note:                                      |         |        |
| D00.40        | Function           | The function code will restore to 0 after  | 0       |        |
| P00.18        | restore parameter  | finishing the operation of the selected    | 0       | Ø      |
|               |                    | function code.                             |         |        |
|               |                    | Restoring to the default value will cancel |         |        |
|               |                    | the user password. Use this function with  |         |        |
|               |                    | caution.                                   |         |        |
| P01 Group St  | art-up and stop co | ontrol                                     |         |        |
|               |                    | 0: Decelerate to stop. After the stop      |         |        |
|               |                    | command becomes valid, the inverter        |         |        |
|               |                    | decelerates to reduce the output           |         |        |
| P01.08        | Stop mode          | frequency during the set time. When the    | 0       | 0      |
|               |                    | frequency decreases to 0Hz, the inverter   |         |        |
|               |                    | stops.                                     |         |        |
|               |                    | 1: Coast to stop. After the stop command   |         |        |

| Function code                | Name                                                | Detailed illust                                                                                                         | ration of parameters                                                                     | Default            | Modify |
|------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------|--------|
|                              |                                                     | becomes valid, the inverter ceases the<br>output immediately. And the load coasts to<br>stop at the mechanical inertia. |                                                                                          |                    |        |
| P01.18                       | Operation<br>protection                             | 0: The terminal ru<br>invalid when powe<br>1: The terminal ru<br>when powering or                                       | inning command is<br>ering on.<br>inning command is valid<br>n.                          | 1                  | 0      |
| P01.21                       | Restart after power off                             | 0: Disabled<br>1: Enabled                                                                                               |                                                                                          | 1                  | 0      |
| P02 Group Motor 1 parameters |                                                     |                                                                                                                         |                                                                                          |                    |        |
| P02.00                       | Motor type                                          | 0: Asynchronous motor<br>1: Reserved                                                                                    |                                                                                          | 0                  | Ô      |
| P02.01                       | Rated power of<br>asynchronous<br>motor             | 0.1–3000.0kW                                                                                                            | Set the parameter of the asynchronous motor.                                             | Depend<br>on model | Ø      |
| P02.02                       | Rated frequency<br>of asynchronous<br>motor         | 0.01Hz–P00.03                                                                                                           | In order to ensure the<br>controlling<br>performance, set the<br>P02.01–P02.05           | 50.00<br>Hz        | Ø      |
| P02.03                       | Rated rotating<br>speed of<br>asynchronous<br>motor | 1–36000rpm                                                                                                              | according to the name<br>plate of the<br>synchronous motor.                              | Depend<br>on model | O      |
| P02.04                       | Rated voltage of<br>asynchronous<br>motor           | 0–1200V                                                                                                                 | MAX500-PV series<br>inverters provide the<br>function of parameter<br>autotuning.Correct | Depend<br>on model | Ø      |

| Function code | Name                                        | Detailed illustr | ration of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default            | Modify |
|---------------|---------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| P02.05        | Rated current of<br>asynchronous<br>motor   | 0.8–6000.0A      | parameter autotuning<br>comes from the correct<br>setting of the motor<br>name plate.<br>In order to ensure the<br>controlling<br>performance, please<br>configure the motor<br>according to the<br>standard principles, if<br>the gap between the<br>motor and the standard<br>one is huge, the<br>features of the inverter<br>will decrease.<br><b>Note:</b> Resetting the<br>rated power (P02.01) of<br>the motor can initialize<br>the motor parameters<br>P02.02–P02.10. | Depend<br>on model | O      |
| P02.06        | Stator resistor of<br>asynchronous<br>motor | 0.001–65.535Ω    | After the motor<br>parameter autotuning                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depend<br>on model | 0      |
| P02.07        | Rotor resistor of<br>asynchronous<br>motor  | 0.001–65.535Ω    | of P02.06–P02.10 will<br>be updated                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depend<br>on model | 0      |
| P02.08        | Leakage<br>inductance of<br>asynchronous    | 0.1–6553.5mH     | automatically. These<br>parameters are basic<br>parameters controlled                                                                                                                                                                                                                                                                                                                                                                                                         | Depend<br>on model | 0      |

| Function code | Name                                          | Detailed illust                                                                                                                                                                                                                                                                                                                                                                                                                          | Detailed illustration of parameters                                                                                                                                                                                                                                                                                                                                                                                     |                    |   |
|---------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---|
|               | motor                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                          | by vectors which                                                                                                                                                                                                                                                                                                                                                                                                        |                    |   |
| P02.09        | Mutual inductance<br>of asynchronous<br>motor | 0.1–6553.5mH                                                                                                                                                                                                                                                                                                                                                                                                                             | directly impact the<br>features.<br><b>Note:</b> Users cannot<br>modify the parameters<br>freely.                                                                                                                                                                                                                                                                                                                       | Depend<br>on model | 0 |
| P02.10        | Non-load current<br>of asynchronous<br>motor  | 0.1–6553.5A                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                         | Depend<br>on model | 0 |
| P04 Group S   | VPWM control                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |   |
| P04.00        | V/F curve setting                             | These function co<br>of MAX500-PV se<br>need of different I<br>0: Straight line V/<br>constant torque Id<br>1: Multi-dots V/F o<br>2: Torque-stepdov<br>(1.3 order)<br>3: Torque-stepdov<br>(1.7 order)<br>4: Torque-stepdov<br>(2.0 order)<br>Curves 2–4 apply<br>as fans and water<br>adjust according f<br>loads to get the b<br>5: Customized V/<br>mode, V can be s<br>can be adjusted th<br>given channel set<br>voltage given cha | des define the V/F curve<br>eries motor 1 to meet the<br>oads.<br>F curve; applying to the<br>oad<br>curve<br>wn characteristic curve<br>wn characteristic curve<br>wn characteristic curve<br>to the torque loads such<br>r pumps. Users can<br>to the features of the<br>est performance.<br>F(V/F separation); in this<br>eparated from f and f<br>hrough the frequency<br>by P00.06 or the<br>nnel set by P04.27 to | 4                  | O |

| Function code | Name               | Detailed illustration of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default | Modify |
|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                    | change the feature of the curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |
|               |                    | <b>Note:</b> $V_{b}$ in the below picture is the motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |
|               |                    | rated voltage and $f_{\text{b}}$ is the motor rated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |
|               |                    | frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
|               |                    | Vb<br>Unitage<br>United type<br>United |         |        |
| P04.01        | Torque boost       | Torque boost to the output voltage for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0%    | 0      |
| P04.02        | Torque boost close | features of low frequency torque. P04.01<br>is for the Max. output voltage Vb.<br>P04.02 defines the percentage of closing<br>frequency of manual torque to fb.<br>Torque boost should be selected<br>according to the load. The bigger the load<br>is, the bigger the torque is. Too big torque<br>boost is inappropriate because the motor<br>will run with over magnetic, and the<br>current of the inverter will increase to add<br>the temperature of the inverter and<br>decrease the efficiency.<br>When the torque boost is set to 0.0%, the<br>inverter is automatic torque boost.<br>Torque boost threshold: below this<br>frequency point, the torque boost is valid,<br>but over this frequency point, the torque<br>boost is invalid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0%   | Ο      |

| Function code | Name                                | Detailed illustration of parameters                                                                                                                                                                                  | Default     | Modify |
|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|
|               |                                     | Output voltage<br>V boost Output voltage<br>V boost Output voltage<br>V boost Output frequency<br>f cut-off $f_b$<br>Setting range of P04.01: 0.0%:<br>(automatic) 0.1%–10.0%<br>Setting range of P04.02: 0.0%–50.0% |             |        |
| P04.03        | V/F frequency<br>point 1 of motor 1 | If P04.00 =1, the user can set V//F curve<br>by P04.03–P04.08.<br>V/F is set to the motor load.                                                                                                                      | 0.00Hz      | Ο      |
| P04.04        | V/F voltage point 1<br>of motor 1   | low-frequency voltage is high<br>overtemperature and burning may occur<br>and the overcurrent stall and protection                                                                                                   | 00.0%       | 0      |
| P04.05        | V/F frequency<br>point 2 of motor 1 | may occur to the inverter.<br>Output voltage<br>$100.0\% V_b$                                                                                                                                                        | 00.00<br>Hz | 0      |
| P04.06        | V/F voltage point 2<br>of motor 1   | $V1 \xrightarrow[f]{f_1 f_2 f_3 f_b} Output$ Setting range of P04.03: 0.00Hz–P04.05                                                                                                                                  | 00.0%       | 0      |
| P04.07        | V/F frequency<br>point 3 of motor 1 | Setting range of P04.04: 0.0%–110.0%<br>(rated voltage of motor1)<br>Setting range of P04.05: P04.03–P04.07<br>Setting range of P04.06: 0.0%–110.0%                                                                  | 00.00<br>Hz | 0      |
| P04.08        | V/F voltage point 3<br>of motor 1   | (rated voltage of motor1)<br>Setting range of P04.07: P04.05–P02.02                                                                                                                                                  | 00.0%       | 0      |

| Function code | Name                          | Detailed illustration of parameters          | Default | Modify     |  |  |
|---------------|-------------------------------|----------------------------------------------|---------|------------|--|--|
|               |                               | (rated frequency of motor1) or P04.05–       |         |            |  |  |
|               |                               | P02.16 (rated frequency of motor1)           |         |            |  |  |
|               |                               | Setting range of P04.08: 0.0%–110.0%         |         |            |  |  |
|               |                               | (rated voltage of motor1)                    |         |            |  |  |
|               |                               | This function code is used to compensate     |         |            |  |  |
|               |                               | the change of the rotation speed caused      |         |            |  |  |
|               |                               | by load during compensation SVPWM            |         |            |  |  |
|               |                               | control to improve the rigidity of the motor |         |            |  |  |
|               |                               | It can be set to the rated slip frequency o  |         |            |  |  |
|               |                               | the motor which is counted as below:         |         |            |  |  |
| D04.00        | V/F slip<br>compensation gain | $\triangle f=f_b-n^*p/60$                    | 0.00/   |            |  |  |
| P04.09        |                               | Of which, fb is the rated frequency of the   | U       |            |  |  |
|               |                               | motor, its function code is P02.01; n is th  |         |            |  |  |
|               |                               | rated rotating speed of the motor and its    |         |            |  |  |
|               |                               | function code is P02.02; p is the pole pail  |         |            |  |  |
|               |                               | of the motor. 100.0% corresponds to the      |         |            |  |  |
|               |                               | rated slip frequency $	riangle$ f.           |         |            |  |  |
|               |                               | Setting range: 0.0–200.0%                    |         |            |  |  |
|               |                               | Ones: Reserved                               |         |            |  |  |
|               | Two phase control             | Tens: Voltage of the secondary winding (V    |         |            |  |  |
| P04.34        | selection of single-phase     | phase) reverse                               | 0x00    | Ø          |  |  |
|               | motor                         | 0: Not reversed; 1: Reversed                 |         |            |  |  |
|               |                               | Setting range: 0–0x11                        |         |            |  |  |
| P04.35        | Voltage ratio of V<br>and U   | 0.00–2.00                                    | 1.40    | 0          |  |  |
| P05 Group In  | putterminals                  |                                              |         |            |  |  |
|               |                               | 0: High-speed pulse input. See P05.49–       | 1       |            |  |  |
| F 00.00       | пот приттуре                  | P05.54.                                      | 1       | $\bigcirc$ |  |  |

| Function code | Name                            | Detailed illustration of parameters       | Default | Modify     |
|---------------|---------------------------------|-------------------------------------------|---------|------------|
|               |                                 | 1: HDI switch input                       |         |            |
| P05.01        | X1 terminals                    | 0: No function                            | 42      | $\bigcirc$ |
| 1 00.01       | function selection              | 1: Forward rotation operation             | 72      |            |
|               | X2 terminals                    | 2: Reverse rotation operation             |         |            |
| P05.02        | function selection              | 3: 3-wire control operation               | 43      | Ø          |
|               |                                 | 4: Forward jogging                        |         |            |
| P05.03        | X3 terminals                    | 5: Reverse jogging                        | 44      | O          |
|               | function selection              | 6: Coast to stop                          |         |            |
|               | X4 terminals                    | 7: Fault reset                            |         |            |
| P05.04        | function selection              | 8: Operation pause                        | 45      | Ø          |
| P05.05        | X5 terminals function selection | 9: External fault input                   |         |            |
|               |                                 | 10: Increasing frequency setting (UP)     | 1       |            |
|               |                                 | 11: Decreasing frequency setting (DOWN)   |         |            |
|               |                                 | 12: Cancel the frequency change setting   |         |            |
|               |                                 | 13: Shift between A setting and B setting |         |            |
|               |                                 | 14: Shift between combination setting and |         |            |
|               |                                 | A setting                                 |         |            |
|               |                                 | 15: Shift between combination setting and |         |            |
|               |                                 | B setting                                 |         |            |
|               | HDI torminals                   | 16: Multi-step speed terminal 1           |         |            |
| P05.09        |                                 | 17: Multi-step speed terminal 2           | 46      | Ø          |
|               |                                 | 18: Multi-step speed terminal 3           |         |            |
|               |                                 | 19: Multi-step speed terminal 4           |         |            |
|               |                                 | 20: Multi-step speed pause                |         |            |
|               |                                 | 21: ACC/DEC time1                         |         |            |
|               |                                 | 22: ACC/DEC time2                         |         |            |
|               |                                 | 23: Simple PLC stop reset                 |         |            |
|               |                                 | 24: Simple PLC pause                      |         |            |

| Function code | Name | Detailed illustration of parameters        | Default | Modify |
|---------------|------|--------------------------------------------|---------|--------|
|               |      | 25: PID control pause                      |         |        |
|               |      | 26: Traverse pause (stop at the current    |         |        |
|               |      | frequency)                                 |         |        |
|               |      | 27: Traverse reset (return to the center   |         |        |
|               |      | frequency)                                 |         |        |
|               |      | 28: Counter reset                          |         |        |
|               |      | 29: Torque control prohibition             |         |        |
|               |      | 30: ACC/DEC prohibition                    |         |        |
|               |      | 31: Counter trigger                        |         |        |
|               |      | 32: Reserved                               |         |        |
|               |      | 33: Cancel the frequency change setting    |         |        |
|               |      | 34: DC brake                               |         |        |
|               |      | 35: Reserved                               |         |        |
|               |      | 36: Shift the command to the keypad        |         |        |
|               |      | 37: Shift the command to terminals         |         |        |
|               |      | 38: Shift the command to communication     |         |        |
|               |      | 39: Pre-magnetized command                 |         |        |
|               |      | 40: Clear the power                        |         |        |
|               |      | 41: Keep the power                         |         |        |
|               |      | 42: Forced switch to power frequency       |         |        |
|               |      | input (Switching-on indicates switching to |         |        |
|               |      | power frequency input; switching-off       |         |        |
|               |      | indicates the input mode is controlled by  |         |        |
|               |      | the keypad.)                               |         |        |
|               |      | 43: Full water signal                      |         |        |
|               |      | 44: Non-water signal                       |         |        |
|               |      | 45: Two-phase control mode of the          |         |        |
|               |      | single-phase motor                         |         |        |

| Function code | Name               | Detai                         | led illus   | eters       | Default              | Modify    |       |   |
|---------------|--------------------|-------------------------------|-------------|-------------|----------------------|-----------|-------|---|
|               |                    | 46: PV                        | voltage d   | ligital inp | ut when              | no boos   |       |   |
|               |                    | module                        | is app      | lied (in    | auto                 | switching |       |   |
|               |                    | mode)                         |             |             |                      |           |       |   |
|               |                    | 47–63:                        | Reserved    | b           |                      |           |       |   |
|               | Polarity selection | 0x000–0                       | 0x10F       |             |                      |           |       |   |
| P05.10        | of the input       | BIT8                          | BIT3        | BIT2        | BIT1                 | BIT0      | 0x000 | Ø |
|               | terminals          | HDI                           | X4          | X3          | X2                   | X1        |       |   |
| P06 Group     | Output terminals   |                               |             |             |                      |           |       |   |
|               |                    | 0: Invali                     | d           |             |                      |           |       |   |
| P06.03        | Relay RO1 output   | 1: In op                      | eration     |             |                      |           | 30    | 0 |
|               | Selection          | 2: Forwa                      | ard rotati  | on opera    | ation                |           |       |   |
|               |                    | 3: Reverse rotation operation |             |             |                      |           |       |   |
|               |                    | 4: Joggi                      | ng opera    |             |                      |           |       |   |
|               |                    | 5: Inver                      | ter fault   |             |                      |           |       |   |
|               |                    | 6: Frequency degree test FDT1 |             |             |                      |           |       |   |
|               |                    | 7: Frequency degree test FDT2 |             |             |                      |           |       |   |
|               |                    | 8: Frequ                      | uency arr   |             |                      |           |       |   |
|               |                    | 9: Zero speed running         |             |             |                      |           |       |   |
|               |                    | 10: Upp                       | er limit fr | requency    | <sup>,</sup> arrival |           |       |   |
| P06.04        | Relay RO2 output   | 11: Low                       | er limit fr | requency    | arrival              |           | 5     | 0 |
|               | selection          | 12: Rea                       | dy for op   | eration     |                      |           |       |   |
|               |                    | 13: Pre-                      | magnetiz    | zing        |                      |           |       |   |
|               |                    | 14: Ove                       | rload ala   | rm          |                      |           |       |   |
|               |                    | 15: Und                       | erload al   | arm         |                      |           |       |   |
|               |                    | 16: Con                       | npletion o  | of simple   | PLC sta              | ige       |       |   |
|               |                    | 17: Con                       | npletion o  | of simple   | PLC cyc              | cle       |       |   |
|               |                    | 18: Sett                      | ing coun    | t value a   | rrival               |           |       |   |
|               |                    | 19: Defi                      | ned cour    | nt value a  | arrival              |           |       |   |

| Function code | Name                       | Detailed illustration of parameters       | Default | Modify |
|---------------|----------------------------|-------------------------------------------|---------|--------|
|               |                            | 20: External fault valid                  |         |        |
|               |                            | 21: Reserved                              |         |        |
|               |                            | 22: Running time arrival                  |         |        |
|               |                            | 23: Modbus communication virtual          |         |        |
|               |                            | terminals output                          |         |        |
|               |                            | 24–26: Reserved                           |         |        |
|               |                            | 27: Weak light                            |         |        |
|               |                            | 28 - 29: Reserved                         |         |        |
|               |                            | 30: Shift to PV mode (If the system works |         |        |
|               |                            | in PV mode, relay output is high.)        |         |        |
|               |                            | The function code is used to set the pole |         |        |
|               |                            | of the output terminal.                   |         |        |
|               |                            | When the current bit is set to 0, output  |         |        |
|               | Polarity selection         | terminal is positive.                     |         |        |
| P06.05        | of output                  | When the current bit is set to 1, output  | 0       | 0      |
|               | terminals                  | terminal is negative.                     |         |        |
|               |                            | BIT1 BIT0                                 |         |        |
|               |                            | RO2 RO1                                   |         |        |
|               |                            | Setting range: 0–F                        |         |        |
| P06.10        | Switch on delay of<br>RO1  | 0.000–50.000s                             | 10.000s | 0      |
| P06.11        | Switch off delay of<br>RO1 | 0.000–50.000s                             | 10.000s | 0      |
| P06.12        | Switch on delay of<br>RO2  | 0.000–50.000s                             | 0.000s  | 0      |
| P06.13        | Switch off delay of<br>RO2 | 0.000–50.000s                             | 0.000s  | 0      |

Solar pump inverter operation guide

| Function<br>code | Name              | Detailed illustration of parameters         | Default | Modify |
|------------------|-------------------|---------------------------------------------|---------|--------|
| P07 Group H      | uman-Machine Inte | erface                                      |         |        |
|                  |                   | 0: No function                              |         |        |
|                  |                   | 1: Jogging running. Press QUICK/JOG to      |         |        |
|                  |                   | begin the jogging running.                  |         |        |
|                  |                   | 2: Shift the display state by the shifting  |         |        |
|                  |                   | key. Press QUICK/JOG to shift the           |         |        |
|                  |                   | displayed function code from right to left. |         |        |
|                  |                   | 3: Shift between forward rotations and      |         |        |
|                  |                   | reverse rotations. Press QUICK/JOG to       |         |        |
|                  | QUICK/JOG         | shift the direction of the frequency        |         |        |
|                  |                   | commands. This function is only valid in    |         |        |
|                  |                   | the keypad commands channels.               |         |        |
|                  |                   | 4: Clear UP/DOWN settings. Press            |         |        |
|                  |                   | QUICK/JOG to clear the set value of         |         |        |
| P07.02           |                   | UP/DOWN.                                    | 6       | Ø      |
|                  |                   | 5: Coast to stop. Press QUICK/JOG to        |         |        |
|                  |                   | coast to stop.                              |         |        |
|                  |                   | 6: Shift the running commands source.       |         |        |
|                  |                   | Press QUICK/JOG to shift the running        |         |        |
|                  |                   | commands source.                            |         |        |
|                  |                   | 7: Quick commissioning mode (based on       |         |        |
|                  |                   | non-factory parameters)                     |         |        |
|                  |                   | Note: Press QUICK/JOG to shift between      |         |        |
|                  |                   | forward rotation and reverse rotation, the  |         |        |
|                  |                   | inverter does not record the state after    |         |        |
|                  |                   | shifting during powering off. The inverter  |         |        |
|                  |                   | will run according to parameter P00.13      |         |        |
|                  |                   | during next powering on.                    |         |        |

| Function code | Name                      | Detailed illustration of parameters         | Default | Modify |
|---------------|---------------------------|---------------------------------------------|---------|--------|
|               |                           | When P07.02=6, set the shifting             |         |        |
|               |                           | sequence of running command channels.       |         |        |
|               |                           | 0: Keypad control→terminal control          |         |        |
|               | QUICK/JOG the             | →communication control                      |         |        |
| P07.03        | of running                | 1: Keypad control←→terminals control        | 1       | 0      |
|               | command                   | 2: Keypad control←→communication            |         |        |
|               | command                   | control                                     |         |        |
|               |                           | 3: Terminals control←→communication         |         |        |
|               |                           | control                                     |         |        |
|               |                           | Select the stop function by STOP/RST        |         |        |
|               | STOP/RST stop<br>function | STOP/RST is effective in any state for the  |         |        |
|               |                           | keypad reset.                               |         |        |
|               |                           | 0: Only valid for the keypad control        |         |        |
| P07.04        |                           | 1: Both valid for keypad and terminals      | 1       | 0      |
|               |                           | control                                     |         |        |
|               |                           | 2: Both valid for keypad and                |         |        |
|               |                           | communication control                       |         |        |
|               |                           | 3: Valid for all control modes              |         |        |
|               |                           | When the inverter is configured with the    |         |        |
|               |                           | boost module, this function code displays   |         |        |
|               | Boost modulo              | the temperature of this module. This        |         |        |
| P07.11        | tomporature               | function code is valid only in the AC mode. |         | •      |
|               | temperature               | This function code is invalid in the PV     |         |        |
|               |                           | mode.                                       |         |        |
|               |                           | -20.0–120.0°                                |         |        |
| P07.12        | Converter module          | -20.0–120.0°                                |         | ●      |
|               |                           |                                             |         |        |
| P07.15        | MSB of inverter           | Display the power used by the inverter.     |         |        |

### Solar pump inverter operation guide

| Function code          | Name               | Detailed illustration of parameters       | Default | Modify |
|------------------------|--------------------|-------------------------------------------|---------|--------|
|                        | power              | Inverter power consumption =              |         |        |
|                        | consumption        | P07.15*1000 + P07.16                      |         |        |
|                        | LSB of inverter    | Setting range of P07.15: 0–65535 (*1000)  |         |        |
| P07.16                 | power              | Setting range of P07.16: 0.0–999.9        |         | ●      |
|                        | consumption        | Unit: kWh                                 |         |        |
| P07.27                 | Current fault type | 0: No fault                               |         | •      |
| D07 28                 | Previous fault     | 1: IGBT U phase protection (OUt1)         |         |        |
| F 07.20                | type               | 2: IGBT V phase protection (OUt2)         |         | •      |
| D07 20                 | Previous 2 fault   | 3: IGBT W phase protection (OUt3)         |         |        |
| F07.29                 | type               | 4: OC1                                    |         | •      |
|                        | Previous 3 fault   | 5: OC2                                    |         |        |
| F07.30                 | type               | 6: OC3                                    |         | •      |
| D07 21                 | Previous 4 fault   | 7: OV1                                    |         |        |
| P07.31                 | type               | 8: OV2                                    |         | •      |
| D07 22                 | Previous 5 fault   | 9: OV3                                    |         |        |
| F07.32                 | type               | 10: UV                                    |         | •      |
| D07 57                 | Previous 6 fault   | 11: Motor overload (OL1)                  |         |        |
| F07.57                 | type               | 12: The inverter overload (OL2)           |         | •      |
|                        | Previous 7 fault   | 13: Input side phase loss (SPI)           |         |        |
| P07.50                 | type               | 14: Output side phase loss (SPO)          |         | •      |
|                        | Previous 8 fault   | 15: Overheat of the boost module (OH1)    |         |        |
| P07.59                 | type               | 16: Overheat fault of the inverter module |         | •      |
| <b>D</b> 07.00         | Previous 9 fault   | (OH2)                                     |         |        |
| P07.60                 | type               | 17: External fault (EF)                   |         | •      |
| <b>D</b> 07.04         | Previous 10 fault  | 18: 485 communication fault (CE)          |         |        |
| P07.61                 | type               | 19: Current detection fault (ItE)         |         | ●      |
| <b>D</b> 0 <b>T</b> 00 | Previous 11 fault  | 20: Motor antotune fault (tE)             |         |        |
| P07.62                 | type               | 21: EEPROM operation fault (EEP)          |         |        |

### Solar pump inverter operation guide

| Function code  | Name              | Detailed illustration of parameters        | Default | Modify |
|----------------|-------------------|--------------------------------------------|---------|--------|
| D07.62         | Previous 12 fault | 22: PID response offline fault (PIDE)      |         |        |
| P07.03         | type              | 23: Braking unit fault (bCE)               |         | •      |
|                | Previous 13 fault | 24: Running time arrival (END)             |         |        |
| P07.64         | type              | 25: Electrical overload (OL3)              |         | •      |
|                | Previous 14 fault | 26 - 31:Reserved                           |         |        |
| P07.65         | type              | 32: Grounding short circuit fault 1 (ETH1) |         | •      |
| <b>D</b> 07.00 | Previous 15 fault | 33: Grounding short circuit fault 2 (ETH2) |         |        |
| P07.66         | type              | 34: Speed deviation fault (dEu)            |         | •      |
|                | Previous 16 fault | 35: Maladjustment (STo)                    |         |        |
| P07.67         | type              | 36:Underload fault (LL)                    |         | •      |
|                | Previous 17 fault | 37: Hydraulic probe damage (tSF)           |         |        |
| P07.68         | type              | 38: PV reverse connection fault (PINV)     |         | •      |
|                | Previous 18 fault | 39: PV overcurrent (PVOC)                  |         |        |
| P07.69         | type              | 40: PV overvoltage (PVOV)                  |         | •      |
|                | Previous 19 fault | 41: PV undervoltage (PVLV)                 |         |        |
| P07.70         | type              | 42: Fault on communication with the boost  |         | •      |
|                |                   | module (E-422)                             |         |        |
|                |                   | 43: Bus overvoltage detected on the boost  |         |        |
|                |                   | module (OV)                                |         |        |
|                |                   | Note: Faults 38 - 40 can be detected in    |         |        |
|                |                   | boost. The boost module stops working      |         |        |
|                | Previous 20 fault | once after detecting a fault. The boost    |         | •      |
| P07.71         | type              | module sends back the fault information to |         | •      |
|                |                   | the inverter module in the next data send  |         |        |
|                |                   | back.                                      |         |        |
|                |                   | Alarms:                                    |         |        |
|                |                   | Weak light alarm (A-LS)                    |         |        |
|                |                   | Underload alarm (A-LL)                     |         |        |

| Function code                | Name                                         | Detailed illustration of parameters | Default | Modify |
|------------------------------|----------------------------------------------|-------------------------------------|---------|--------|
|                              |                                              | Full water alarm (A-tF)             |         |        |
|                              |                                              | Water-empty alarm (A-tL)            |         |        |
| P08 Group Enhanced functions |                                              |                                     |         |        |
| P08.28                       | Times of fault<br>reset                      | 0–10                                | 5       | 0      |
| P08.29                       | Interval time of<br>automatic fault<br>reset | 0.1–3600.0s                         | 10.0s   | 0      |

## 6.2 Parameters of special functions

| Function<br>code | Name        | Detailed illustration of parameters      | Default  | Modify |
|------------------|-------------|------------------------------------------|----------|--------|
| P11 Group Pr     |             |                                          |          |        |
|                  |             | 0x000–0x011                              |          |        |
|                  |             | LED ones:                                |          |        |
|                  |             | 0: Input phase loss software protection  |          |        |
|                  |             | disabled                                 |          |        |
| 544.00           |             | 1: Input phase loss software protection  |          |        |
|                  | Phase loss  | enabled                                  |          |        |
|                  |             | LED tens:                                | Depend   | 0      |
| P11.00           | protection  | 0: Output phase loss software protection | on model |        |
|                  |             | disabled                                 |          |        |
|                  |             | 1: Output phase loss software protection |          |        |
|                  |             | enabled                                  |          |        |
|                  |             | LED hundreds:                            |          |        |
|                  |             | Reserved                                 |          |        |
|                  |             | 000–111                                  |          |        |
| D14.04           | Frequency   | 0: Disable                               | 0        | 0      |
| P11.01           | decrease at | 1: Enable                                | U        |        |

| Function<br>code | Name                 | I        | Detailed illustra     | Default     | Modify       |          |   |
|------------------|----------------------|----------|-----------------------|-------------|--------------|----------|---|
|                  | sudden powerloss     |          |                       |             |              |          |   |
|                  |                      | Se       | etting range: 0.00    | )Hz–P00.    | 03/s         |          |   |
|                  |                      | Af       | fter the power lo     | ss of the   | grid, the bu | S        |   |
|                  |                      | vc       | oltage drops to       | the sudd    | en frequenc  | y        |   |
|                  |                      | de       | ecrease point, t      | the inver   | ter begin t  |          |   |
|                  |                      | de       | ecrease the ru        | unning f    | requency a   | đ        |   |
|                  | Frequency            | P        | 11.02, to make        | the inve    | rter generat | 8        |   |
| P11.02           | decrease ratio at    | pc       | ower again. The       | returning   | g power ca   | 0.00Hz/s | 0 |
|                  | sudden power loss    | m        | aintain the bus       | voltage     | to ensure    | 8        |   |
|                  |                      | ra       | ted running of the    | e inverter  | until the    |          |   |
|                  |                      |          | covery of power.      |             |              |          |   |
|                  |                      |          | Voltage<br>degree     | 220V        | 400V         |          |   |
|                  |                      |          | Frequency<br>decrease | 260V        | 460V         |          |   |
| D45 0            |                      |          | point                 |             |              |          |   |
| P15 Group Sp     | becial functions for | · P\     | V inverters           |             |              |          |   |
|                  |                      | 0:       |                       |             |              |          |   |
|                  |                      | 1:       |                       |             |              |          |   |
| P15.00           | PV inverter          | 0        | means the funct       | ion is inva | alid and the | 1        | Ø |
|                  | Selection            | ∣ gr     | oup of paramete       | rs cannot   |              |          |   |
|                  |                      |          |                       | ion is ena  | abled, and   |          |   |
|                  |                      |          | 15 parameters ca      | an be adju  | Isted        |          |   |
|                  |                      | 0:       | Voltage reference     |             |              |          |   |
|                  |                      | 1:       | Max. power trac       | king        | <i>c</i>     |          |   |
|                  | Vmpp voltage         | 0        | means to apply        | voltage r   | eference     |          |   |
| P15.01           | reference            | m<br>  . | ode. The referen      |             | Ø            |          |   |
|                  |                      | gi       | ven by P15.02.        |             |              |          |   |
|                  |                      | 1        | means to apply        | the refer   | ence voltage |          |   |
|                  |                      | of       | Max. power tra        | 5           |              |          |   |

| Function code | Name                 | Detailed illustration of parameters         | Default | Modify |
|---------------|----------------------|---------------------------------------------|---------|--------|
|               |                      | changing until the system is stable.        |         |        |
|               |                      | Note: If terminal 43 is valid, the function |         |        |
|               |                      | is invalid.                                 |         |        |
|               |                      | 0.0–6553.5 V DC                             |         |        |
|               |                      | If P15.01 is 0, the reference voltage is    |         |        |
| D15 00        | Vmpp voltage         | given by P15.02. (During test, reference    |         |        |
| P 15.02       | keypad reference     | voltage should be lower than PV input       | 250.07  | 0      |
|               |                      | voltage; otherwise, the system will run at  |         |        |
|               |                      | lower limit of frequency).                  |         |        |
|               |                      | 0.0–100.0% (100.0% corresponds to           |         |        |
|               |                      | P15.02)                                     |         |        |
|               | PI control deviation | If the ratio percentage of real voltage to  |         |        |
|               |                      | reference voltage, which is abs(bus         |         |        |
|               |                      | voltage-reference voltage)*100.0%/          |         |        |
| P15.03        |                      | reference voltage, exceeds the deviation    | 0.0%    | 0      |
|               |                      | limit of P15.03, PI adjustment is           |         |        |
|               |                      | available; otherwise, there is no PI        |         |        |
|               |                      | adjustment and the value is defaulted to    |         |        |
|               |                      | be 0.0%.                                    |         |        |
|               |                      | abs: absolute value                         |         |        |
|               |                      | P15.05–100.0% (100.0% corresponds to        |         |        |
|               |                      | P00.03)                                     |         |        |
|               |                      | P15.04 is used to limit the Max. value of   |         |        |
| P15.04        | Upper frequency      | target frequency, and 100.0%                | 100.0%  | 0      |
|               | of PI output         | corresponds to P00.03.                      |         |        |
|               |                      | After PI adjustment, the target frequency   |         |        |
|               |                      | cannot exceed the upper limit.              |         |        |
| P15.05        | Lower frequency      | 0.0%–P15.04 (100.0% corresponds to          | 20.0%   | 0      |

| Function code     | Name               | Detailed illustration of parameters       | Default | Modify |
|-------------------|--------------------|-------------------------------------------|---------|--------|
|                   | of PI output       | P00.03)                                   |         |        |
|                   |                    | P15.05 is used to limit the Min. value of |         |        |
|                   |                    | target frequency, and 100.0%              |         |        |
|                   |                    | corresponds to P00.03.                    |         |        |
|                   |                    | After PI adjustment, the target frequency |         |        |
|                   |                    | cannot be less than the lower limit.      |         |        |
|                   |                    | 0.00–100.00                               |         |        |
|                   |                    | Proportion coefficient 1 of the target    |         |        |
| P15.06            | KP1                | frequency                                 | 5.00    | 0      |
|                   |                    | The bigger the value is, the stronger the |         |        |
|                   |                    | effect and faster the adjustment is.      |         |        |
|                   |                    | 0.00–100.00                               |         |        |
|                   |                    | Integral coefficient 1 of the target      |         |        |
| P15.07            | KI1                | frequency                                 | 5.00    | 0      |
|                   |                    | The bigger the value is, the stronger the |         |        |
|                   |                    | effect and faster the adjustment is.      |         |        |
|                   |                    | 0.00–100.00                               |         |        |
|                   |                    | Proportion coefficient 2 of the target    |         |        |
| P15.08            | KP2                | frequency                                 | 35.00   | 0      |
|                   |                    | The bigger the value is, the stronger the |         |        |
|                   |                    | effect and faster the adjustment is.      |         |        |
|                   |                    | 0.00–100.00                               |         |        |
|                   |                    | Integral coefficient 2 of the target      |         |        |
| P15.09            | KI2                | frequency                                 | 35.00   | 0      |
|                   |                    | The bigger the value is, the stronger the |         |        |
|                   |                    | effect and faster the adjustment is.      |         |        |
| D15 10            | DI owitching point | 0.0–6553.5Vdc                             | 20 01/  |        |
| P15.10   PI s<br> | PI switching point | If the absolute value of bus voltage      | 20.0V   |        |

| Function<br>code | Name                | Detailed illustration of parameters         | Default | Modify |
|------------------|---------------------|---------------------------------------------|---------|--------|
|                  |                     | minus the reference value is bigger than    |         |        |
|                  |                     | P15.10, it will switch to P15.08 and        |         |        |
|                  |                     | P15.09; otherwise it is P15.06 and          |         |        |
|                  |                     | P15.07.                                     |         |        |
|                  |                     | 0: Digital input of the water-level control |         |        |
|                  |                     | 1: AI1(the water-level signal is input      |         |        |
|                  |                     | through AI1, not supported currently)       |         |        |
|                  |                     | 2: AI2 (the water-level signal is input     |         |        |
|                  |                     | through AI2, not supported currently)       |         |        |
|                  |                     | 3: AI3 (the water-level signal is input     |         |        |
|                  |                     | through AI3, not supported currently)       |         |        |
|                  |                     | If the function code is 0, the water-level  |         |        |
|                  |                     | signal is controlled by the digital input.  |         |        |
|                  |                     | See 43 and 44 functions of S terminalsin    |         |        |
|                  |                     | group P05 for detailed information. If the  |         |        |
| D15 11           | Matar laval control | full-water signal is valid, the system will |         |        |
| F 13.11          |                     | report the alarm (A-tF) and sleep after     | 0       |        |
|                  |                     | the time of P15.14. During the alarm, the   |         |        |
|                  |                     | full-water signal is invalid and the system |         |        |
|                  |                     | will clear the alarm after the time of      |         |        |
|                  |                     | P15.15. If the empty-water signal is valid, |         |        |
|                  |                     | the system will report the alarm (A-tL)     |         |        |
|                  |                     | and sleep after the time of P15.16.         |         |        |
|                  |                     | During the alarm, the empty -water signal   |         |        |
|                  |                     | is invalid and the system will clear the    |         |        |
|                  |                     | alarm after the time of P15.17.             |         |        |
|                  |                     | If the function code is 1-3, it is the      |         |        |
|                  |                     | reference of water-level control analog     |         |        |

| Function code | Name              | Detailed illustration of parameters        | Default | Modify |
|---------------|-------------------|--------------------------------------------|---------|--------|
|               |                   | signal. For details, see P15.12 and        |         |        |
|               |                   | P12.13.                                    |         |        |
|               |                   | 0.0–100.0%                                 |         |        |
|               |                   | This code is valid when P15.11 water       |         |        |
|               |                   | level control is based on analog input. If |         |        |
|               |                   | the detected water level control analog    |         |        |
|               |                   | signal is less than the water level        |         |        |
|               |                   | threshold P15.12 and keeps in the state    |         |        |
|               |                   | after the delay time P15.14, the system    |         |        |
|               |                   | reports A-tF and sleeps.                   |         |        |
|               |                   | If the delay time is not reached, the      |         |        |
|               |                   | signal is bigger than the water level      |         |        |
|               |                   | threshold, the time will be cleared        |         |        |
| D15 12        | Full-water level  | automatically. When the measured water     | 25.0%   | 0      |
| 1 10.12       | threshold         | level control analog signal is less than   | 20.070  | 0      |
|               |                   | the water level threshold, the delay time  |         |        |
|               |                   | will be counted again.                     |         |        |
|               |                   | 0 is full water and 1 is no water.         |         |        |
|               |                   | During the full-water alarm, if the        |         |        |
|               |                   | detected water level signal is higher than |         |        |
|               |                   | the threshold of P15.12 and the delay      |         |        |
|               |                   | counts, the alarm is cleared after the     |         |        |
|               |                   | time set by P15.15 is reached in this      |         |        |
|               |                   | continuous state continues. During the     |         |        |
|               |                   | non-continuous application, the delay      |         |        |
|               |                   | timing will clear automatically.           |         |        |
| D15 13        | Empty-water level | 0.0–100.0%                                 | 75 በ%   | 0      |
| P15.13        | threshold         | This code is valid when P15.11 water       | 75.070  |        |

| Function code           | Name                                         | Detailed illustration of parameters        | Default | Modify |
|-------------------------|----------------------------------------------|--------------------------------------------|---------|--------|
|                         |                                              | level control is based on analog input.    |         |        |
|                         |                                              | If the detected water level control analog |         |        |
|                         |                                              | signal is greater than the water level     |         |        |
|                         |                                              | threshold P15.13 and keeps in the state    |         |        |
|                         |                                              | after the delay time P15.16, the system    |         |        |
|                         |                                              | reports A- tLand sleeps. If the delay time |         |        |
|                         |                                              | is not reached (that means non-            |         |        |
|                         |                                              | continuous), the delay time is             |         |        |
|                         |                                              | automatically cleared. When the            |         |        |
|                         |                                              | detected water level control analog        |         |        |
|                         |                                              | signal is less than the water level        |         |        |
|                         |                                              | threshold, the delay counts.               |         |        |
|                         |                                              | During the empty-water alarm, if the       |         |        |
|                         |                                              | detected water level control analog        |         |        |
|                         |                                              | signal is less than the water level        |         |        |
|                         |                                              | threshold P15.13 and delay counts, the     |         |        |
|                         |                                              | empty-water alarm is cleared after the     |         |        |
|                         |                                              | delay time set by P15.17 in this           |         |        |
|                         |                                              | continuous state. In the non-continuous    |         |        |
|                         |                                              | state, the delay time is automatically     |         |        |
|                         |                                              | cleared.                                   |         |        |
|                         |                                              | 0–10000s                                   |         |        |
|                         | Full water delay                             | Time setting of full water delay (This     | Fo      | 0      |
| P15.14 Full water delay | function code is still valid when the digita | 55                                         | 0       |        |
|                         |                                              | indicates the full-water signal.)          |         |        |
|                         |                                              | 0–10000s                                   |         |        |
| P15.15                  | vvake-up delay in                            | Time setting of wake-up delay in full-     | 20s     | 0      |
|                         | tull water state                             | water state (This function code is still   |         |        |

| Function code | Name                      | Detailed illustration of parameters          | Default | Modify     |
|---------------|---------------------------|----------------------------------------------|---------|------------|
|               |                           | valid when the digital indicates the         |         |            |
|               |                           | full-water signal.)                          |         |            |
|               |                           | 0–10000s                                     |         |            |
| D15 16        | Empty water delay         | Time setting of empty-water delay (This      | 50      | 0          |
| F 15.10       |                           | function code is still valid when the digita | 55      | U          |
|               |                           | indicates the empty-water signal.)           |         |            |
|               |                           | 0–10000s                                     |         |            |
|               |                           | Time setting of wake-up delay in empty-      |         |            |
| P15.17        | wake-up delay in          | water state (This function code is still     | 20s     | 0          |
|               | empty-water state         | valid when the digital indicates the         |         |            |
|               |                           | empty-water signal.)                         |         |            |
|               | Hydraulic probe<br>damage | 0.0–100.0%                                   | 0.0%    |            |
|               |                           | 0.0%: Invalid. If it is not 0.0%, when the   |         |            |
| P15.18        |                           | signal is longer than P15.18, it will report |         | U          |
|               |                           | tSF fault directly and stop.                 |         |            |
|               |                           | 0.0–1000.0s                                  |         |            |
|               |                           | This parameter is used to set the            |         |            |
|               | Operation time of         | operation time of water pump underload.      |         |            |
| P15.19        | water pump                | Under the continuous underload               | 60.0s   | 0          |
|               | underload                 | operation, underload prealarm (A-LL) will    |         |            |
|               |                           | be reported if the operation time is         |         |            |
|               |                           | reached.                                     |         |            |
|               |                           | 0.0%: Automatic underloaddetection           |         |            |
|               |                           | 0.1–100.0%                                   |         |            |
| D15 20        | Current detection         | If it is 0.0%, it is determined by the       | 00 00%  | $\bigcirc$ |
| F 10.20       |                           | underload detection of the water pump        | 00.00%  | U          |
|               | ορειαιιοπ                 | inverter.                                    |         |            |
|               |                           | If it is not 0.0%, it is determined by       |         |            |

| Function code | Name                     | Detailed illustration of parameters         | Default | Modify |
|---------------|--------------------------|---------------------------------------------|---------|--------|
|               |                          | P15.20. 100.0% corresponds to the rated     |         |        |
|               |                          | current of the motor.                       |         |        |
|               |                          | If the target frequency and the absolute    |         |        |
|               |                          | value of the ramp frequency is less than    |         |        |
|               |                          | or equal to P15.22, and the current is      |         |        |
|               |                          | less than P15.20, after the time set by     |         |        |
|               |                          | P15.19, underload fault is reported.        |         |        |
|               |                          | Otherwise, it will be operated normally. If |         |        |
|               |                          | the state is not continuous, the delay      |         |        |
|               |                          | counting will be cleared automatically.     |         |        |
|               | Underload reset<br>delay | 0.0–1000.0s                                 |         |        |
|               |                          | This parameter is used to set the           |         |        |
|               |                          | underload reset delay.                      |         |        |
|               |                          | The operation time and reset time are       |         |        |
|               |                          | counted at the same time during             |         |        |
|               |                          | underload, and it is generally bigger than  |         |        |
| P15.21        |                          | P15.19 so as to ensure underload            | 120.0s  | Ο      |
|               |                          | prealarm is reported after underload        |         |        |
|               |                          | delay operation time is reached. After the  |         |        |
|               |                          | time set by P15.21-P15.19, it is reset. If  |         |        |
|               |                          | the value is the same as P15.19, it is      |         |        |
|               |                          | automatically reset when underload          |         |        |
|               |                          | prealarm is reported.                       |         |        |
|               |                          | 0.00–200.00Hz                               |         |        |
|               |                          | P15.22 is the lag frequency threshold for   |         |        |
| P15.22        | Lag frequency            | the analysis of underload operation. I      | 0.30Hz  | 0      |
|               | unesnola                 | the target frequency and the absolute       |         |        |
|               |                          | value of the ramp frequency is less than    |         |        |

\_

| Function code | Name                                 | Detailed illustration of parameters          | Default | Modify |
|---------------|--------------------------------------|----------------------------------------------|---------|--------|
|               |                                      | or equal to P15.22, the current will be      |         |        |
|               |                                      | compared.                                    |         |        |
|               |                                      | 0.0–3600.0s                                  |         |        |
|               |                                      | Delay time of weak light                     |         |        |
|               |                                      | If the output frequency is less than or      |         |        |
|               |                                      | equal to the lower limit of PI output        |         |        |
|               |                                      | frequency and the state lasts for the set    |         |        |
|               |                                      | value, it will report A-LS and sleep. If the |         |        |
|               |                                      | state is not continuous, the delay           |         |        |
| P15.23        | Delay time of weak                   | counting will be cleared automatically.      | 100.0s  | 0      |
|               | light                                | Note: If the bus voltage is lower than the   |         |        |
|               |                                      | undervoltage point or the PV voltage is      |         |        |
|               |                                      | lower than 70V, it will report the weak      |         |        |
|               |                                      | light alarm without any delay time.          |         |        |
|               |                                      | If P15.32=0, the system will switch to the   |         |        |
|               |                                      | power frequency input when the light is      |         |        |
|               |                                      | weak.                                        |         |        |
|               |                                      | 0.0–3600.0s                                  |         |        |
|               |                                      | Delay time of wake-up at weak light          |         |        |
|               |                                      | If the weak light alarm is reported, after   |         |        |
|               | Delay time of                        | the delay time of wake-up, the alarm will    |         | 0      |
| P15.24        | wake-up at weak                      | be cleared and it will run again.            | 300.0s  | 0      |
|               | light                                | When P15.32=0, if the PV voltage is          |         |        |
|               |                                      | higher than P15.34, after the delay time,    |         |        |
|               |                                      | it will switch to PV input mode.             |         |        |
| P15.25        | Initial reference<br>voltage display | 0.0–2000.0V                                  | 0       | •      |
| P15.26        | Min. voltage                         | 0.00 - 1.00                                  | 0.70    | 0      |

| Function code | Name                                                    | Detailed illustration of parameters                                                                                                                                                                                                                                                                                                                                                                                    | Default | Modify |
|---------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|               |                                                         | Initial reference voltage =PV<br>voltage-P15.28                                                                                                                                                                                                                                                                                                                                                                        |         |        |
| P15.29        | Adjustment of<br>upper and lower<br>limit time of Vmppt | 0.0–10.0s<br>When P15.29 is set to 0.0, the automatic<br>adjustment is invalid.<br>If it is not 0.0, the upper and lower limits<br>of Vmppt will be adjusted automatically<br>at the inveral set by P15.29. The medium<br>value is the current PV voltage and the<br>limit is P15.30:<br>Maximum/Minimum reference<br>voltage=Current PV voltge±P15.30 and it<br>will update to P15.26 and P15.27 at the<br>same time. | 1.0s    | Ο      |
| P15.30        | Adjustment of<br>upper and lower<br>limits of Vmppt     | 5.0–100.0V<br>Adjustment of the upper and lower limits                                                                                                                                                                                                                                                                                                                                                                 | 30.0V   | 0      |
| P15.31        | Max. value of<br>Vmppt                                  | P15.27–6553.5V<br>During the maximum power tracking, the<br>upper limit of the solar cell panel<br>reference voltage will not exceed the<br>value set by P15.31. The factory value<br>depends on the model. By default, the<br>value for the -4 models is 750V and the<br>value for other models is 400V.                                                                                                              | 400.0V  | Ο      |
| P15.32        | PV input and<br>power frequency<br>input selection      | 0: Automatic shift<br>1: Power frequency input<br>2: PV input                                                                                                                                                                                                                                                                                                                                                          | 2       | Ø      |

| Function<br>code | Name                | Detailed illustration of parameters         | Default | Modify |
|------------------|---------------------|---------------------------------------------|---------|--------|
|                  |                     | If the value is 0, the system will switch   |         |        |
|                  |                     | between PV input and power frequency        |         |        |
|                  |                     | input according to the detected PV          |         |        |
|                  |                     | voltage and threshold;                      |         |        |
|                  |                     | If the value is 1, the system will force to |         |        |
|                  |                     | switch to power frequency input;            |         |        |
|                  |                     | If the value is 2, the system will force to |         |        |
|                  |                     | switch to PV input.                         |         |        |
|                  |                     | Note: When the terminal input 42 is         |         |        |
|                  |                     | valid, the function code will be invalid.   |         |        |
|                  |                     | 0.0V–P15.34                                 |         |        |
|                  |                     | If PV voltage is lower than the threshold   |         |        |
|                  |                     | or the light is weak, it can switch to      |         |        |
|                  |                     | power frequency input through the relay     |         |        |
|                  | Threshold to        | output.                                     |         |        |
| P15.33           | switch to power     | If the value is 0, it is invalid.           | 70.0V   | 0      |
|                  | frequency input     | For inverters without the boost module,     |         |        |
|                  |                     | the switching point voltage is determined   |         |        |
|                  |                     | by the external voltage detection circuit.  |         |        |
|                  |                     | For inverters with the boost module, the    |         |        |
|                  |                     | switching point voltage is 70V.             |         |        |
|                  |                     | P15.33–400.0V                               |         |        |
|                  |                     | If PV voltage is greater than the           |         |        |
| P15.34           | Thus she she had to | threshold, it can switch to PV input        |         |        |
|                  | Inresnoid to        | through the relay output after the time set | 100.0V  | 0      |
|                  | Switch to PV input  | by P15.24. To prevent frequent              |         |        |
|                  |                     | switching, this threshold must be greater   |         |        |
|                  |                     | than P15.33.                                |         |        |

| Function code | Name               | Detailed illustration of parameters               | Default | Modify |
|---------------|--------------------|---------------------------------------------------|---------|--------|
|               |                    | If the value is 0.0, it is invalid.               |         |        |
|               |                    | The default value depends on model.               |         |        |
|               |                    | The pump flow is $\mathcal{Q}_N$ if the pump runs |         |        |
| P15.35        | Rated pump flow    | at the rated pump frequency and rated             | 0.0     | 0      |
|               |                    | lift. Unit: cubic meter/hour.                     |         |        |
|               |                    | The pump lift is $H_{N}$ if the pump runs         |         |        |
| P15.36        | Rated pump lift    | at the rated frequency and rated current.         | 0.0     | 0      |
|               |                    | Unit: meter                                       |         |        |
|               |                    | When the PV voltage is less than the              |         |        |
|               |                    | preset voltage, the system reports the            |         |        |
| P15.37        | Voltage setting at | PV undervoltage (UV) fault.                       | 70.0    |        |
|               | point              | The default value depends on the model.           | 70.0    | 0      |
|               |                    |                                                   |         |        |
|               |                    | This function code is provided for users          |         |        |
|               |                    | to change models. For example, if the             |         |        |
|               |                    | user wants to use model -4 (default after         |         |        |
| P15.39        | Model              | factory delivery) as model -2, P15.39             | 0       | Ø      |
|               |                    | must be set to 2.                                 |         |        |
|               |                    | 0: MAX500-PV-1 220V; single-phase                 |         |        |
|               |                    | input; single-phase output                        |         |        |

## Solar pump inverter operation guide

| Function<br>code | Name | Detailed illustration of parameters |        | Default | Modify |
|------------------|------|-------------------------------------|--------|---------|--------|
|                  |      | 1: MAX500-PV-2; 220V single-        | input; |         |        |
|                  |      | phase three-phase output            |        |         |        |
|                  |      | 2: MAX500-PV-3; 220V three-         | input; |         |        |
|                  |      | phase three-phase output            |        |         |        |
|                  |      | 3: MAX500-PV-4; 400V three-         | input; |         |        |
|                  |      | phase three-phase output            |        |         |        |
|                  |      | Setting range: 0–3                  |        |         |        |

### 7 Communication protocol

#### 7.1 Brief instruction to Modbus protocol

Modbus protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for Modbus protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one Modbus network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

Modbus network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one Modbus network. The master means the device which has active talking right to sent message to Modbus network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the Modbus network only after receiving the controlling or inquiring message (command) form the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

Generally, the user can set PC, PLC, IPC and HMI as the masters to realize central control. Setting certain device as the master is a promise other than setting by a bottom or a switch or the device has a special message format. For example, when the upper monitor is running, if the operator clicks sending command bottom, the upper monitor can send command message actively even it can not receive the message form other devices. In this case, the upper monitor is the master. And if the designer makes the inverter send the data only after receiving the command, then the inverter is the slave.

The master can communicate with any single slave or with all slaves. For the single-visiting command, the slave should feedback a response message; for the broadcasting message from the master, the slave does not need to feedback the response message.

#### 7.2 Application of the inverter

The Modbus protocol of the inverter is RTU mode and the physical layer is 2-wire RS485.

#### 7.2.1 2-wire RS485

The interface of 2-wire RS485 works on semiduplex and its data signal applies differential transmission which is called balance transmission, too. It uses twisted pairs, one of which is defined as A (+) and the other is defined as B (-). Generally, if the positive electrical level between sending drive A and B is among +2 + 6V, it is logic "1", if the electrical level is among -2V - 6V, it is logic "0".

485+ on the terminal board corresponds to A and 485- to B.

Communication baud rate means the binary bit number in one second. The unit is bit/s (bps). The higher the baud rate is, the quicker the transmission speed is and the weaker the anti-interference is. If the twisted pairs of 0.56mm (24AWG) is applied as the communication cables, the Max. Transmission distance is as below:

| Baud | Max.transmissi | Baud | Max.transmissi | Baud | Max.transmissi | Baud | Max.transmissi |
|------|----------------|------|----------------|------|----------------|------|----------------|
| bauu | on             | bauu | on             | bauu | on             | bauu | on             |
| rate | distance       | rate | distance       | rate | distance       | rate | distance       |

| 2400BP | 1800m  | 4800BP | 1200m  | 9600BP | 800m   | 19200BP | 600m |
|--------|--------|--------|--------|--------|--------|---------|------|
| S      | 100011 | S      | 120011 | S      | 000111 | S       | ocom |

It is recommended to use shield cables and make the shield layer as the grounding wires during RS485 remote communication.

In the cases with less devices and shorter distance, it is recommended to use  $120\Omega$  terminal resistor as the performance will be weakened if the distance increase even though the network can perform well without load resistor.

#### 7.2.1.1 Single application

Figure 1 is the site Modbus connection figure of single inverter and PC. Generally, the computer does not have RS485 interface, the RS232 or USB interface of the computer should be converted into RS485 by converter. Connect the A terminal of RS485 to the 485+ terminal of the inverter and B to the 485- terminal. It is recommended to use the shield twisted pairs. When applying RS232-RS485 converter, if the RS232 interface of the converter, the wire length should be as short as possible within the length of 15m. It is recommended to connect the RS232-RS485 converter to the computer directly. If using USB-RS485 converter, the wire should be as short as possible, too.

Select a right interface to the upper monitor of the computer (select the interface of RS232-RS485 converter, such as COM1) after the wiring and set the basic parameters such as communication baud rate and digital check bit to the same as the inverter.



Figure 1 RS485 physical connection in single application

**7.2.1.2** Multi-applicationIn the real multi-application, the chrysanthemum connection and star connection are commonly used.

Chrysanthemum chain connection is required in the RS485 industrial fieldbus standards. The two ends are connected to terminal resistors of  $120\Omega$  which is shown as figure 2. Figure 3 is the simply connection figure and figure 4 is the real application figure.



Figure 2 Chrysanthemum connection



#### Figure 3 Chrysanthemum connection

It is recommended to use shield cables in multiple connection. The basic parameter of the devices, such as baud rate and digital check bit in RS485 should be the same and there should be no repeated address.

#### 7.2.2 RTU mode

#### 7.2.2.1 RTU communication frame format

If the controller is set to communicate by RTU mode in Modbus network every 8bit byte in the message includes two 4Bit hex characters. Compared with ACSII mode, this mode can send more data at the same baud rate.

#### Code system

• 1 start bit

• 7 or 8 digital bit, the minimum valid bit can be sent firstly. Every 8 bit frame includes two hex characters

(0...9, A...F)

- 1 even/odd check bit . If there is no checkout, the even/odd check bit is inexistent.
- 1 end bit (with checkout), 2 Bit(no checkout)

#### Error detection field

#### · CRC

The data format is illustrated as below:

11-bit character frame (BIT1~BIT8 are the digital bits)

| Start bit                                               | BIT1 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7 | BIT8 | Check<br>bit | End bit |
|---------------------------------------------------------|------|------|------|------|------|------|------|------|--------------|---------|
| 10 bit obaractor frame (PIT1-PIT7 are the digital bite) |      |      |      |      |      |      |      |      |              |         |

10-bit character frame (BIT1~BIT7 are the digital bits)

| Start bit | BIT1 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7 | Check<br>bit | End bit |
|-----------|------|------|------|------|------|------|------|--------------|---------|
|-----------|------|------|------|------|------|------|------|--------------|---------|

In one character frame, the digital bit takes effect. The start bit, check bit and end bit is used to send the digital bit right to the other device. The digital bit, even/odd checkout and end bit should be set as the same in real application.

The Modbus minimum idle time between frames should be no less than 3.5 bytes. The network device is detecting, even during the interval time, the network bus. When the first field (the address field) is received, the corresponding device decodes next transmitting character. When the interval time is at least 3.5 byte, the message ends.

The whole message frame in RTU mode is a continuous transmitting flow. If there is an interval time (more than 1.5 bytes) before the completion of the frame, the receiving device will renew the uncompleted message and suppose the next byte as the address field of the new message. As such, if the new message follows the previous one within the interval time of 3.5 bytes, the receiving device will deal with it as the same with the previous message. If these two phenomena all happen during the transmission, the CRC will generate a fault message to respond to the sending devices.

The standard structure of RTU frame:

| START            | T1-T2-T3-T4(transmission time of 3.5 bytes)                                |
|------------------|----------------------------------------------------------------------------|
| ADDR             | Communication address: 0~247(decimal system)(0 is the broadcast address)   |
| CMD              | 03H:read slave parameters                                                  |
|                  | 06H:write slave parameters                                                 |
| DATA (N-1)       | The data of 2*N bytes are the main content of the communication on well on |
| • • •            | the care of data exchanging                                                |
| DATA (0)         |                                                                            |
| CRC CHK low bit  | Detection value: CRC (16RIT)                                               |
| CRC CHK high bit |                                                                            |
| END              | T1-T2-T3-T4(transmission time of 3.5 bytes)                                |

#### 7.2.2.1 RTU communication frame error checkout

Various factors (such as electromagnetic interference) may cause error in the data transmission. For example, if the sending message is a logic "1",A-B potential difference on RS485 should be 6V, but in reality, it may be -6V because of electromagnetic interference, and then the other devices take the sent message as logic "0". If there is no error checkout, the receiving devices will not find the message is wrong and they may give incorrect response which cause serious result. So the checkout is essential to the message.

The theme of checkout is that: the sender calculate the sending data according to a fixed formula, and then send the result with the message. When the receiver gets this message, they will calculate anther result according to the same method and compare it with the sending one. If two results are the same, the message is correct. If not, the message is incorrect.

The error checkout of the frame can be divided into two parts: the bit checkout of the byte and the whole data checkout of the frame (CRC check).

#### Bit checkout of the byte

The user can select different bit checkouts or non-checkout, which impacts the check bit setting of each byte. The definition of even checkout: add an even check bit before the data transmission to illustrate the number of "1" in the data transmission is odd number or even number. When it is even, the check byte is "0", otherwise, the check byte is "1". This method is used to stabilize the parity of the data.

The definition of odd checkout: add an odd check bit before the data transmission to illustrate the number of "1" in the data transmission is odd number or even number. When it is odd, the check byte is "0", otherwise, the check byte is "1". This method is used to stabilize the parity of the data.

For example, when transmitting "11001110", there are five "1" in the data. If the even checkout is applied, the even check bit is "1"; if the odd checkout is applied; the odd check bit is "0". The even and odd check bit is calculated on the check bit position of the frame. And the receiving devices also carry out even and odd checkout. If the parity of the receiving data is different from the setting value, there is an error in the communication.

#### CRC check

The checkout uses RTU frame format. The frame includes the frame error detection field which is based on the CRC calculation method. The CRC field is two bytes, including 16 figure binary values. It is added into the frame after calculated by transmitting device. The receiving device recalculates the CRC of the received frame and compares them with the value in the received CRC field. If the two CRC values are different, there is an error in the communication.

During CRC, 0\*FFFF will be stored. And then, deal with the continuous 6-above bytes in the frame and the value in the register. Only the 8Bit data in every character is effective to CRC, while the start bit, the end and the odd and even check bit is ineffective.

The calculation of CRC applies the international standard CRC checkout principles. When the user is editing CRC calculation, he can refer to the relative standard CRC calculation to write the required CRC calculation program.

Here provided a simple function of CRC calculation for the reference (programmed with C language):

```
unsigned int crc_cal_value(unsigned char *data_value,unsigned char data_length)
```

```
{
int i;
```

```
unsigned int crc_value=0xffff;
```

```
while(data_length--)
```

```
{ crc_value^=*data_value++;
```

```
for(i=0;i<8;i++)
```

```
{
```

if(crc\_value&0x0001)crc\_value=(crc\_value>>1)^0xa001;

}

```
else crc_value=crc_value>>1;
```

```
}
return(crc value);
```

```
}
```

In ladder logic, CKSM calculated the CRC value according to the frame with the table inquiry. The method is advanced with easy program and quick calculation speed. But the ROM space the program occupied is huge. So use it with caution according to the program required space.

#### 7.3 RTU command code and communication data illustration

#### 7.3.1 command code:03H

**03H**(correspond to binary 0000 0011),read N words(Word)(the Max. continuous reading is 16 words) Command code 03H means that if the master read data form the inverter, the reading number depends on the "data number" in the command code. The Max. continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working stage of the inverter.

For example, read continuous 2 data content from0004H from the inverter with the address of 01H (read the content of data address of 0004H and 0005H), the frame structure is as below:

RTU master command message (from the master to the inverter)

| START                     | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
|---------------------------|----------------------------------------------|
| ADDR                      | 01H                                          |
| CMD                       | 03H                                          |
| High bit of the start bit | 00H                                          |
| Low bit of the start bit  | 04H                                          |
| High bit of data number   | 00H                                          |

| Low bit of data number | 02H                                          |
|------------------------|----------------------------------------------|
| CRC low bit            | 85H                                          |
| CRC high bit           | CAH                                          |
| END                    | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

T1-T2-T3-T4 between START and END is to provide at least the time of 3.5 bytes as the leisure time and distinguish two messages for the avoidance of taking two messages as one message.

**ADDR** = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

**CMD**=03H means the command message is sent to read data form the inverter and CMD occupies one byte **"Start address"** means reading data form the address and it occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

**"Data number"** means the reading data number with the unit of word. If the "start address' is 0004H and the "data number" is 0002H, the data of 0004H and 0005H will be read.

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

**RTU** slave response message (from the inverter to the master)

| START                          | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
|--------------------------------|----------------------------------------------|
| ADDR                           | 01H                                          |
| CMD                            | 03H                                          |
| Byte number                    | 04H                                          |
| Data high bit of address 0004H | 13H                                          |
| Data low bit of address 0004H  | 88H                                          |
| Data high bit of address 0005H | 00H                                          |
| Data low bit of address 0005H  | 00H                                          |
| CRC CHK low bit                | 7EH                                          |
| CRC CHK high bit               | 9DH                                          |
| END                            | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

The meaning of the response is that:

**ADDR** = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

**CMD**=03H means the message is receiced from the inverter to the master for the response of reading command and CMD occupies one byte

**"Byte number"** means all byte number from the byte(excluding the byte) to CRC byte(excluding the byte). 04 means there are 4 byte of data from the "byte number" to "CRC CHK low bit", which are "digital address 0004H high bit", "digital address 0004H low bit", "digital address 0005H high bit" and "digital address 0005H low bit".

There are 2 bytes stored in one data with the fact that the high bit is in the front and the low bit is in the behind of the message, the data of data address 0004H is 1388H,and the data of data address 0005H is 0000H.

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

#### 7.3.2 Command code:06H

06H(correspond to binary 0000 0110), write one word(Word)

The command means that the master write data to the inverter and one command can write one data other than multiple dates. The effect is to change the working mode of the inverter.

For example, write 5000 (1388H) to 0004H from the inverter with the address of 02H, the frame structure is as below:

| - · ·                            |                                              |
|----------------------------------|----------------------------------------------|
| START                            | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| ADDR                             | 02H                                          |
| CMD                              | 06H                                          |
| High bit of writing data address | 00H                                          |
| Low bit of writing data address  | 04H                                          |
| data content                     | 13H                                          |
| data content                     | 88H                                          |
| CRC CHK low bit                  | C5H                                          |
| CRC CHK high bit                 | 6EH                                          |
| END                              | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

RTU master command message (from the master to the inverter)

RTU slave response message (from the inverter to the master)

| START                            | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
|----------------------------------|----------------------------------------------|
| ADDR                             | 02H                                          |
| CMD                              | 06H                                          |
| High bit of writing data address | 00H                                          |
| Low bit of writing data address  | 04H                                          |
| High bit of data content         | 13H                                          |
| Low bit of data content          | 88H                                          |
| CRC CHK low bit                  | C5H                                          |
| CRC CHK high bit                 | 6EH                                          |
| END                              | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

**Note:** section 10.2 and 10.3 mainly describe the command format, and the detailed application will be mentioned in 10.8 with examples.

#### 7.3.3 Command code 08H for diagnosis

Meaning of sub-function codes

| Sub-function Code | Description                        |
|-------------------|------------------------------------|
| 0000              | Return to inquire information data |

For example: The inquiry information string is same as the response information string when the loop detection to address 01H of driver is carried out.

The RTU request command is:

| START                          | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
|--------------------------------|----------------------------------------------|
| ADDR                           | 01H                                          |
| CMD                            | 08H                                          |
| High byte of sub-function code | 00Н                                          |
| Low byte of sub-function code  | оон                                          |
| High byte of data content      | 12H                                          |
| Low byte of data content       | ABH                                          |
| Low byte of CRC                | ADH                                          |
| High byte of CRC               | 14H                                          |
| END                            | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| The RTU response command is:   |                                              |
| START                          | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| ADDR                           | 01H                                          |
| CMD                            | 08H                                          |
| High byte of sub-function code | 00Н                                          |
| Low byte of sub-function code  | оон                                          |
| High byte of data content      | 12H                                          |
| Low byte of data content       | ABH                                          |
| Low byte of CRC                | ADH                                          |
| High byte of CRC               | 14H                                          |

#### 7.3.4 The definition of data address

END

The address definition of the communication data in this part is to control the running of the inverter and get the state information and relative function parameters of the inverter.

T1-T2-T3-T4 (transmission time of 3.5 bytes)

#### 7.3.4.1 The rules of parameter address of the function codes

The parameter address occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind. The range of high and low byte are: high byte—00~ffH; low byte—00~ffH. The high byte is the group number before the radix point of the function code and the low byte is the number after the radix point. But both the high byte and the low byte should be changed into hex. For example P05.05, the group number before the radix point of the function code is 05, then the high bit of the parameter is 05, the number after the radix point 05, then the low bit of the parameter is 05, then the function code address is 0505H and the parameter address of P10.01 is 0A01H.

**Note:** PE group is the factory parameter which can not be read or changed. Some parameters can not be changed when the inverter is in the running state and some parameters can not be changed in any state. The setting range, unit and relative instructions should be paid attention to when modifying the function code parameters.

Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the high bit of the function code form 0 to 1 can also realize the function. For example, the function code P00.07 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007H. This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

#### 7.3.4.2 The address instruction of other function in Modbus

The master can operate on the parameters of the inverter as well as control the inverter, such as running or stopping and monitoring the working state of the inverter.

| Address                 | Data meaning instruction                                                                               | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| definition              | Data meaning instruction                                                                               | characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0001H:forward running                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0002H:reverse running                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2000H                   | 0003H:forward jogging                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0004H:reverse jogging                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0005H:stop                                                                                             | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                         | 0006H:coast to stop (emergency stop)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0007H:fault reset                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0008H:jogging stop                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | 0009H:pre-exciting                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2001                    | Communication setting frequency(0~Fmax(unit:                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2001H                   | 0.01Hz))                                                                                               | \\\/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2002H                   | PID given, range(0~1000, 1000 corresponds                                                              | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                         | to100.0%)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2003H                   | PID feedback, range(0~1000, 1000 corresponds                                                           | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 200011                  | to100.0%)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2004H<br>2005H<br>2006H | Torque setting value (-3000~3000, 1000                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | corresponds to the 100.0% of the rated current                                                         | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                         | of the motor)                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | The upper limit frequency setting during forward                                                       | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                         | rotation(U~Fmax(unit: 0.01Hz))                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | retation(0, Empty(unit: 0,01417))                                                                      | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                         | The upper limit terrue of electrometion terrue                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2007H                   | (0.2000 1000 corresponde to the 100 0% of the                                                          | \\\/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                         | (0~3000; 1000 corresponds to the 100.0% of the                                                         | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                         | The upper limit torque of braking torque                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2008H                   | $(0\sim3000, 1000  corresponds to the 100.0% of the$                                                   | W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                         | rated current of the motor)                                                                            | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                         | Аddress<br>definition<br>2000Н<br>2001Н<br>2002Н<br>2003Н<br>2004Н<br>2005Н<br>2005Н<br>2006Н<br>2006Н | Address<br>definitionData meaning instructiondefinition0001H:forward running0002H:reverse running0002H:reverse running0003H:forward jogging0004H:reverse jogging0005H:stop0006H:coast to stop (emergency stop)0006H:coast to stop (emergency stop)0007H:fault reset0009H:pre-exciting0009H:pre-exciting2001HCommunication setting frequency(0~Fmax(unit:<br>0.01Hz))2002HPID given, range(0~1000, 1000 corresponds<br>to100.0% )2003HPID feedback, range(0~1000, 1000 corresponds<br>to100.0% )2003HTorque setting value (-3000~3000, 1000<br>corresponds to the 100.0% of the rated current<br>of the motor)2005HThe upper limit frequency setting during forward<br>rotation(0~Fmax(unit: 0.01Hz))2006HThe upper limit torque of electromotion torque<br>(0~3000, 1000 corresponds to the 100.0% of the<br>rated current of the motor)2008HThe upper limit torque of braking torque<br>(0~3000, 1000 corresponds to the 100.0% of the<br>rated current of the motor) |  |

Below is the parameter list of other functions

| Function                            | Address    | Data meaning instruction                                                                                                                                                                                                                                                                                                       | R/W             |
|-------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| instruction                         | definition |                                                                                                                                                                                                                                                                                                                                | characteristics |
|                                     | 2009H      | Special control command word<br>Bit0~1:=00:motor 1 =01:motor 2<br>=10:motor 3 =11:motor 4<br>Bit2:=1 torque control =0:speed control                                                                                                                                                                                           | W               |
|                                     | 200AH      | Virtual input terminal command , range:<br>0x000~0x1FF                                                                                                                                                                                                                                                                         | W               |
|                                     | 200BH      | Virtual input terminal command , range:<br>0x00~0x0F                                                                                                                                                                                                                                                                           | W               |
|                                     | 200CH      | Voltage setting value(special for V/F separation)<br>(0~1000, 1000 corresponds to the 100.0% of the<br>rated voltage of the motor)                                                                                                                                                                                             | W               |
|                                     | 200DH      | AO output setting 1(-1000~1000, 1000 corresponds to 100.0%)                                                                                                                                                                                                                                                                    | W               |
|                                     | 200EH      | AO output setting 2(-1000~1000, 1000 corresponds to 100.0%)                                                                                                                                                                                                                                                                    | W               |
| SW 1 of the inverter                | 2100H      | 0001H:forward running<br>0002H:forward running<br>0003H:stop<br>0004H:fault<br>0005H: POFF state                                                                                                                                                                                                                               | R               |
| SW 1 of the inverter                | 2101H      | Bit0: =0:bus voltage is not established =1:bus<br>voltage is established<br>Bi1~2:=00:motor 1 =01:motor 2<br>=10:motor 3 =11:motor 4<br>Bit3: =0:asynchronous motor<br>=1:synchronous motor<br>Bit4:=0:pre-alarm without overload =1:overload<br>pre-alarm<br>Bit5:=0:the motor without exciting<br>=1:the motor with exciting | R               |
| Fault code of the<br>inverter       | 2102H      | See the fault type instruction                                                                                                                                                                                                                                                                                                 | R               |
| Identifying code of<br>the in∨erter | 2103H      | Goodrive1000x0110                                                                                                                                                                                                                                                                                                              | R               |

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the inverter with writing command (06H). R characteristic can only read other than write and W characteristic can only write other than read.

**Note:** when operate on the inverter with the table above, it is necessary to enable some parameters. For example, the operation of running and stopping, it is necessary to set P00.01 to communication running command channel and set P00.02 to MODBUS communication channel. And when operate on "PID given", it

is necessary to set P09.00 to "MODBUS communication setting".

The encoding rules for device codes (corresponds to identifying code 2103H of the inverter)

| Code high<br>8bit | Meaning  | Code low 8<br>position | Meaning                      |
|-------------------|----------|------------------------|------------------------------|
| 01                | Goodrive | 10                     | Goodrive300 Vector inverter  |
|                   |          | 11                     | Goodrive 100 Vector inverter |

**Note:** the code is consisted of 16 bit which is high 8 bits and low 8 bits. High 8 bits mean the motor type series and low 8 bits mean the derived motor types of the series. For example, 0110H means Goodrive100 vector inverters.

#### 7.3.5 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12Hz can not be expressed by hex so 50.12 can be magnified by 100 times into 5012, so hex 1394H can be used to express 50.12.

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values. The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point (n=1), then the fieldbus ratio value m is  $10^{11}$ .

Take the table as the example:



If there is one figure behind the radix point in the setting range or the default value, then the fieldbus ratio value is 10. if the data received by the upper monitor is 50, then the "hibernation restore delay time" is 5.0  $(5.0=50 \div 10)$ . If Modbus communication is used to control the hibernation restore delay time as 5.0s. Firstly, 5.0 can be magnified by 10 times to integer 50 (32H) and then this data can be sent.



After the inverter receives the command, it will change 50 into 5 according to the fieldbus ratio value and

then set the hibernation restore delay time as 5s. Another example, after the upper monitor sends the command of reading the parameter of hibernation restore delay time ,if the response message of the inverter is as following:



Because the parameter data is 0032H (50) and 50 divided by 10 is 5, then the hibernation restore delay time is 5s.

#### 7.3.6 Fault message response

There may be fault in the communication control. For example, some parameter can only be read. If a writing message is sent, the inverter will return a fault response message.

The fault message is from the inverter to the master, its code and meaning is as below:

Communication protocol

| Code | Name             | Meaning                                                                   |
|------|------------------|---------------------------------------------------------------------------|
|      |                  | The command from master can not be executed. The reason maybe:            |
| 01H  | lllegal command  | 1. This command is only for new version and this version can not realize. |
|      |                  | 2. Slave is in fault state and can not execute it.                        |
|      |                  | Some of the operation addresses are invalid or not allowed to access.     |
| 02H  | illegal data     | Especially the combination of the register and the transmitting bytes are |
|      | address          | invalid.                                                                  |
|      |                  | When there are invalid data in the message framed received by slave.      |
| 03H  | lllegal value    | Note: This error code does not indicate the data value to write exceed    |
|      |                  | the range, but indicate the message frame is an illegal frame.            |
| 0411 | Operation failed | The parameter setting in parameter writing is invalid. For example, the   |
| 04日  | Operation failed | function input terminal can not be set repeatedly.                        |
| 0511 |                  | The password written to the password check address is not same as the     |
| UƏH  | Password error   | password set by P7.00.                                                    |
|      |                  | In the frame message sent by the upper monitor, the length of the digital |
| 06H  | Data frame error | frame is incorrect or the counting of CRC check bit in RTU is different   |
|      |                  | from the lower monitor.                                                   |
|      |                  | It only happen in write command, the reason maybe:                        |
| 0711 | Written not      | 1. The written data exceeds the parameter range.                          |
| 0/H  | allowed.         | 2. The parameter should not be modified now.                              |
|      |                  | 3. The terminal has already been used.                                    |
|      | The parameter    |                                                                           |
| 08H  | can not be       | The modified parameter in the writing of the upper monitor can not be     |
|      | changed during   | modified during running.                                                  |
|      | running          |                                                                           |
| 0011 | Password         | When the upper monitor is writing or reading and the user password is     |
| 09H  | protection       | set without password unlocking, it will report that the system is locked. |

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the inverter function codes, there will be following function codes:

0000011 (Hex 03H)

For normal responses, the slave responds the same codes, while for objection responses, it will return:

10000011(Hex 83H)

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the inverter (P00.01, parameter address is 0001H) with the address of 01H to 03, the command is as following: 96



address



Parameters address command



data



Parameters

CRC check

But the setting range of "running command channel" is  $0\sim2$ , if it is set to 3, because the number is beyond

the range, the inverter will return fault response message as below:





Fault code



Abnormal response code 86H means the abnormal response to writing command 06H; the fault code is 04H. In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal can not be set repeatedly.

#### 7.3.7 Example of writing and reading

Refer to 10.4.1 and 10.4.2 for the command format.

#### 7.3.7.1 Example of reading command 03H

Read the state word 1 of the inverter with the address of 01H (refer to table 1). From the table 1, the parameter address of the state word 1 of the inverter is 2100H.

The command sent to the inverter:



The data content is 0003H. From the table 1, the inverter stops.

Watch "the current fault type" to "the previous 5 times fault type" of the inverter through commands, the P07.27~P07.32 and corresponding parameter corresponding function code is address is 071BH~0720H(there are 6 from 071BH).

The command sent to the inverter:





command



address



parameters



CRC check

If the response message is as below:

#### 0C 00 23 00 23 00 23 00 23 00 23 00 23 5F D2 03

| Inverter<br>address | Read<br>command | Byte<br>number | Current<br>fault<br>type | Previous<br>fault type | Previous 2<br>fault type | Previous 3 fault type | Previous 4<br>fault type | Previous 5<br>fault type | CRC check |
|---------------------|-----------------|----------------|--------------------------|------------------------|--------------------------|-----------------------|--------------------------|--------------------------|-----------|
|---------------------|-----------------|----------------|--------------------------|------------------------|--------------------------|-----------------------|--------------------------|--------------------------|-----------|

See from the returned data, all fault types are 0023H (decimal 35) with the meaning of maladjustment (STo).

#### 7.3.7.2 Example of writing command 06H

Make the inverter with the address of 03H to run forward. See table 1, the address of "communication control command" is 2000H and forward running is 0001. See the table below.

| Function instruction             | Address<br>definition | Data meaning instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W<br>characteristics |
|----------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Communication<br>control command | (2000H)               | Q0011:forward running         Q0021:reverse running         Q0031:forward jogging         Q0031:forward jogging stop         Q0031:forward jogging stop         Q0031:forward jogging         Q0031:forward jogging         Q0031:forward jogging stop         Q0031:forward jogging         Q0031:forward jogging         Q0031:forward jogging         Q0031:forward jogging stop         Q0031:forward jogging         Q0031:forward jogging <td>W</td> | W                      |

The command sent by the master:



If the operation is successful, the response may be as below (the same with the command sent by the master):



|                     |             | This parameter is used to set the maximum output             |                  |   |
|---------------------|-------------|--------------------------------------------------------------|------------------|---|
| P00.03<br>frequency |             | frequency of the inverter. Users should pay attention        |                  |   |
|                     | Max. output | output to this parameter because it is the foundation of the |                  | é |
|                     | frequency   | frequency setting and the speed of acceleration and          | 50.00 <b>H</b> 2 | 0 |
|                     |             | deceleration.                                                |                  |   |
|                     |             | Setting range: P00.04~400.00Hz                               |                  | ĺ |

See the figures behind the radix point, the fieldbus ratio value of the Max. output frequency (P00.03) is 100. 100Hz timed by 100 is 10000 and the corresponding hex is 2710H.

The command sent by the master:



master):



Parameters address



CRC check

Note: the blank in the above command is for illustration. The blank can not be added in the actual application unless the upper monitor can remove the blank by themselves.



# Build your trust of technology from China

#### SHENZHEN INOMAX TECHNOLOGY CO.LTD

Address: Ideal Science and Technology Park, Guanlan Avenue, Longhua District, Shenzhen, Guangdong, China

Tel: 0086-75521002258 Fax: 0086-75521002258 E-mail:info@inomaxtechnology.com Websit:www.inomaxtechnology.com

